Best Known (5, 5+5, s)-Nets in Base 49
(5, 5+5, 2450)-Net over F49 — Constructive and digital
Digital (5, 10, 2450)-net over F49, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 50)-net over F49, using
- s-reduction based on digital (0, 0, s)-net over F49 with arbitrarily large s, using
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 0, 50)-net over F49 (see above)
- digital (0, 1, 50)-net over F49, using
- s-reduction based on digital (0, 1, s)-net over F49 with arbitrarily large s, using
- digital (0, 1, 50)-net over F49 (see above)
- digital (0, 1, 50)-net over F49 (see above)
- digital (0, 2, 50)-net over F49, using
- digital (0, 5, 50)-net over F49, using
- net from sequence [i] based on digital (0, 49)-sequence over F49, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F49 with g(F) = 0 and N(F) ≥ 50, using
- the rational function field F49(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 49)-sequence over F49, using
- digital (0, 0, 50)-net over F49, using
(5, 5+5, 4453)-Net over F49 — Digital
Digital (5, 10, 4453)-net over F49, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4910, 4453, F49, 5) (dual of [4453, 4443, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(4910, 4706, F49, 5) (dual of [4706, 4696, 6]-code), using
- (u, u+v)-construction [i] based on
- linear OA(493, 2353, F49, 2) (dual of [2353, 2350, 3]-code), using
- discarding factors / shortening the dual code based on linear OA(493, 2451, F49, 2) (dual of [2451, 2448, 3]-code), using
- Hamming code H(3,49) [i]
- discarding factors / shortening the dual code based on linear OA(493, 2451, F49, 2) (dual of [2451, 2448, 3]-code), using
- linear OA(497, 2353, F49, 5) (dual of [2353, 2346, 6]-code), using
- linear OA(493, 2353, F49, 2) (dual of [2353, 2350, 3]-code), using
- (u, u+v)-construction [i] based on
- discarding factors / shortening the dual code based on linear OA(4910, 4706, F49, 5) (dual of [4706, 4696, 6]-code), using
(5, 5+5, 1188929)-Net in Base 49 — Upper bound on s
There is no (5, 10, 1188930)-net in base 49, because
- 1 times m-reduction [i] would yield (5, 9, 1188930)-net in base 49, but
- the generalized Rao bound for nets shows that 49m ≥ 1628 416319 509441 > 499 [i]