Best Known (10, 15, s)-Nets in Base 49
(10, 15, 60074)-Net over F49 — Constructive and digital
Digital (10, 15, 60074)-net over F49, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 1226)-net over F49, using
- s-reduction based on digital (0, 0, s)-net over F49 with arbitrarily large s, using
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 0, 1226)-net over F49 (see above)
- digital (0, 1, 1226)-net over F49, using
- s-reduction based on digital (0, 1, s)-net over F49 with arbitrarily large s, using
- digital (0, 1, 1226)-net over F49 (see above)
- digital (0, 1, 1226)-net over F49 (see above)
- digital (1, 3, 1226)-net over F49, using
- s-reduction based on digital (1, 3, 2451)-net over F49, using
- digital (4, 9, 1226)-net over F49, using
- (u, u+v)-construction [i] based on
- digital (0, 2, 50)-net over F49, using
- digital (2, 7, 1176)-net over F49, using
- net defined by OOA [i] based on linear OOA(497, 1176, F49, 5, 5) (dual of [(1176, 5), 5873, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(497, 2353, F49, 5) (dual of [2353, 2346, 6]-code), using
- net defined by OOA [i] based on linear OOA(497, 1176, F49, 5, 5) (dual of [(1176, 5), 5873, 6]-NRT-code), using
- (u, u+v)-construction [i] based on
- digital (0, 0, 1226)-net over F49, using
(10, 15, 117747)-Net over F49 — Digital
Digital (10, 15, 117747)-net over F49, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4915, 117747, F49, 5) (dual of [117747, 117732, 6]-code), using
- generalized (u, u+v)-construction [i] based on
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(490, s, F49, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code) (see above)
- linear OA(491, 2403, F49, 1) (dual of [2403, 2402, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(491, s, F49, 1) (dual of [s, s−1, 2]-code) with arbitrarily large s, using
- linear OA(491, 2403, F49, 1) (dual of [2403, 2402, 2]-code) (see above)
- linear OA(491, 2403, F49, 1) (dual of [2403, 2402, 2]-code) (see above)
- linear OA(493, 2403, F49, 2) (dual of [2403, 2400, 3]-code), using
- discarding factors / shortening the dual code based on linear OA(493, 2451, F49, 2) (dual of [2451, 2448, 3]-code), using
- Hamming code H(3,49) [i]
- discarding factors / shortening the dual code based on linear OA(493, 2451, F49, 2) (dual of [2451, 2448, 3]-code), using
- linear OA(499, 2403, F49, 5) (dual of [2403, 2394, 6]-code), using
- (u, u+v)-construction [i] based on
- linear OA(492, 50, F49, 2) (dual of [50, 48, 3]-code or 50-arc in PG(1,49)), using
- extended Reed–Solomon code RSe(48,49) [i]
- Hamming code H(2,49) [i]
- algebraic-geometric code AG(F, Q+22P) with degQ = 3 and degPÂ =Â 2 [i] based on function field F/F49 with g(F) = 0 and N(F) ≥ 50, using the rational function field F49(x) [i]
- linear OA(497, 2353, F49, 5) (dual of [2353, 2346, 6]-code), using
- linear OA(492, 50, F49, 2) (dual of [50, 48, 3]-code or 50-arc in PG(1,49)), using
- (u, u+v)-construction [i] based on
- linear OA(490, 2403, F49, 0) (dual of [2403, 2403, 1]-code), using
- generalized (u, u+v)-construction [i] based on
(10, 15, large)-Net in Base 49 — Upper bound on s
There is no (10, 15, large)-net in base 49, because
- 3 times m-reduction [i] would yield (10, 12, large)-net in base 49, but