Best Known (124−32, 124, s)-Nets in Base 5
(124−32, 124, 408)-Net over F5 — Constructive and digital
Digital (92, 124, 408)-net over F5, using
- trace code for nets [i] based on digital (30, 62, 204)-net over F25, using
- net from sequence [i] based on digital (30, 203)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 30 and N(F) ≥ 204, using
- net from sequence [i] based on digital (30, 203)-sequence over F25, using
(124−32, 124, 1956)-Net over F5 — Digital
Digital (92, 124, 1956)-net over F5, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(5124, 1956, F5, 32) (dual of [1956, 1832, 33]-code), using
- 1831 step Varšamov–Edel lengthening with (ri) = (8, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 26 times 0, 1, 28 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 35 times 0, 1, 37 times 0, 1, 38 times 0, 1, 41 times 0, 1, 43 times 0, 1, 45 times 0, 1, 48 times 0, 1, 51 times 0, 1, 53 times 0, 1, 57 times 0, 1, 59 times 0, 1, 63 times 0, 1, 66 times 0, 1, 70 times 0, 1, 74 times 0, 1, 78 times 0, 1, 82 times 0, 1, 86 times 0, 1, 91 times 0, 1, 97 times 0) [i] based on linear OA(532, 33, F5, 32) (dual of [33, 1, 33]-code or 33-arc in PG(31,5)), using
- dual of repetition code with length 33 [i]
- 1831 step Varšamov–Edel lengthening with (ri) = (8, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 26 times 0, 1, 28 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 35 times 0, 1, 37 times 0, 1, 38 times 0, 1, 41 times 0, 1, 43 times 0, 1, 45 times 0, 1, 48 times 0, 1, 51 times 0, 1, 53 times 0, 1, 57 times 0, 1, 59 times 0, 1, 63 times 0, 1, 66 times 0, 1, 70 times 0, 1, 74 times 0, 1, 78 times 0, 1, 82 times 0, 1, 86 times 0, 1, 91 times 0, 1, 97 times 0) [i] based on linear OA(532, 33, F5, 32) (dual of [33, 1, 33]-code or 33-arc in PG(31,5)), using
(124−32, 124, 444104)-Net in Base 5 — Upper bound on s
There is no (92, 124, 444105)-net in base 5, because
- the generalized Rao bound for nets shows that 5m ≥ 470 208854 172764 706993 737410 818602 838522 298690 567784 098664 448614 259838 081853 508899 099585 > 5124 [i]