Best Known (100, 100+44, s)-Nets in Base 5
(100, 100+44, 400)-Net over F5 — Constructive and digital
Digital (100, 144, 400)-net over F5, using
- 6 times m-reduction [i] based on digital (100, 150, 400)-net over F5, using
- trace code for nets [i] based on digital (25, 75, 200)-net over F25, using
- net from sequence [i] based on digital (25, 199)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 25 and N(F) ≥ 200, using
- net from sequence [i] based on digital (25, 199)-sequence over F25, using
- trace code for nets [i] based on digital (25, 75, 200)-net over F25, using
(100, 100+44, 947)-Net over F5 — Digital
Digital (100, 144, 947)-net over F5, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(5144, 947, F5, 44) (dual of [947, 803, 45]-code), using
- 802 step Varšamov–Edel lengthening with (ri) = (10, 5, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0) [i] based on linear OA(544, 45, F5, 44) (dual of [45, 1, 45]-code or 45-arc in PG(43,5)), using
- dual of repetition code with length 45 [i]
- 802 step Varšamov–Edel lengthening with (ri) = (10, 5, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0) [i] based on linear OA(544, 45, F5, 44) (dual of [45, 1, 45]-code or 45-arc in PG(43,5)), using
(100, 100+44, 85072)-Net in Base 5 — Upper bound on s
There is no (100, 144, 85073)-net in base 5, because
- the generalized Rao bound for nets shows that 5m ≥ 44850 607303 596597 533214 228223 615540 836506 374108 751067 497337 157036 099864 489459 334451 023417 557854 789321 > 5144 [i]