Best Known (14, 14+44, s)-Nets in Base 5
(14, 14+44, 35)-Net over F5 — Constructive and digital
Digital (14, 58, 35)-net over F5, using
- net from sequence [i] based on digital (14, 34)-sequence over F5, using
- Niederreiter–Xing sequence construction III based on the algebraic function field F/F5 with g(F) = 11, N(F) = 32, and 3 places with degree 2 [i] based on function field F/F5 with g(F) = 11 and N(F) ≥ 32, using an explicitly constructive algebraic function field [i]
(14, 14+44, 39)-Net over F5 — Digital
Digital (14, 58, 39)-net over F5, using
- net from sequence [i] based on digital (14, 38)-sequence over F5, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F5 with g(F) = 14 and N(F) ≥ 39, using
(14, 14+44, 118)-Net in Base 5 — Upper bound on s
There is no (14, 58, 119)-net in base 5, because
- extracting embedded orthogonal array [i] would yield OA(558, 119, S5, 44), but
- the linear programming bound shows that M ≥ 219391 039561 905073 117943 143018 377525 224177 099452 632584 528465 633155 133286 120189 310710 562465 418144 486212 710178 918337 832568 376580 429697 766369 066899 092334 716546 803950 677618 739006 913273 215104 709379 374980 926513 671875 / 6 304300 890574 365438 154525 758521 742985 646906 512966 596207 486576 117509 472187 180420 653262 388452 732027 837034 017077 192877 938927 124589 118679 612630 472561 357679 428909 376783 155849 > 558 [i]