Best Known (61−46, 61, s)-Nets in Base 5
(61−46, 61, 36)-Net over F5 — Constructive and digital
Digital (15, 61, 36)-net over F5, using
- net from sequence [i] based on digital (15, 35)-sequence over F5, using
- Niederreiter–Xing sequence construction III based on the algebraic function field F/F5 with g(F) = 11, N(F) = 32, and 4 places with degree 2 [i] based on function field F/F5 with g(F) = 11 and N(F) ≥ 32, using an explicitly constructive algebraic function field [i]
(61−46, 61, 39)-Net over F5 — Digital
Digital (15, 61, 39)-net over F5, using
- t-expansion [i] based on digital (14, 61, 39)-net over F5, using
- net from sequence [i] based on digital (14, 38)-sequence over F5, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F5 with g(F) = 14 and N(F) ≥ 39, using
- net from sequence [i] based on digital (14, 38)-sequence over F5, using
(61−46, 61, 128)-Net in Base 5 — Upper bound on s
There is no (15, 61, 129)-net in base 5, because
- extracting embedded orthogonal array [i] would yield OA(561, 129, S5, 46), but
- the linear programming bound shows that M ≥ 225 703351 334686 795546 543714 854705 660917 563898 351983 318768 755476 560287 068000 794275 777763 473480 076465 648056 496692 653193 682631 818975 802514 700558 996506 093196 738990 750334 054313 785969 725358 881987 631320 953369 140625 / 47 916168 955066 880061 085300 143457 671618 836703 030199 130948 365801 047613 091076 542067 490725 181425 630519 299213 983602 163546 356343 300435 020460 409742 958985 075763 253667 678608 > 561 [i]