Best Known (16, 16+51, s)-Nets in Base 5
(16, 16+51, 37)-Net over F5 — Constructive and digital
Digital (16, 67, 37)-net over F5, using
- net from sequence [i] based on digital (16, 36)-sequence over F5, using
- Niederreiter–Xing sequence construction III based on the algebraic function field F/F5 with g(F) = 11, N(F) = 32, and 5 places with degree 2 [i] based on function field F/F5 with g(F) = 11 and N(F) ≥ 32, using an explicitly constructive algebraic function field [i]
(16, 16+51, 40)-Net over F5 — Digital
Digital (16, 67, 40)-net over F5, using
- net from sequence [i] based on digital (16, 39)-sequence over F5, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F5 with g(F) = 16 and N(F) ≥ 40, using
(16, 16+51, 121)-Net in Base 5 — Upper bound on s
There is no (16, 67, 122)-net in base 5, because
- extracting embedded orthogonal array [i] would yield OA(567, 122, S5, 51), but
- the linear programming bound shows that M ≥ 47603 494340 453570 534576 323399 050877 297024 192402 594355 724026 440826 309427 301178 104168 551878 420793 599099 109003 452560 391671 102631 661792 306990 077989 184949 664087 410925 450427 612304 338254 034519 195556 640625 / 673673 074853 638745 471453 301665 454798 202278 144529 521027 892500 194437 710813 763209 857741 281125 845869 003538 868188 117670 062481 081786 298707 112403 659449 234289 > 567 [i]