Best Known (81−61, 81, s)-Nets in Base 5
(81−61, 81, 43)-Net over F5 — Constructive and digital
Digital (20, 81, 43)-net over F5, using
- t-expansion [i] based on digital (18, 81, 43)-net over F5, using
- net from sequence [i] based on digital (18, 42)-sequence over F5, using
- Niederreiter–Xing sequence construction III based on the algebraic function field F/F5 with g(F) = 17, N(F) = 42, and 1 place with degree 2 [i] based on function field F/F5 with g(F) = 17 and N(F) ≥ 42, using an explicitly constructive algebraic function field [i]
- net from sequence [i] based on digital (18, 42)-sequence over F5, using
(81−61, 81, 45)-Net over F5 — Digital
Digital (20, 81, 45)-net over F5, using
- t-expansion [i] based on digital (19, 81, 45)-net over F5, using
- net from sequence [i] based on digital (19, 44)-sequence over F5, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F5 with g(F) = 19 and N(F) ≥ 45, using
- net from sequence [i] based on digital (19, 44)-sequence over F5, using
(81−61, 81, 146)-Net in Base 5 — Upper bound on s
There is no (20, 81, 147)-net in base 5, because
- extracting embedded orthogonal array [i] would yield OA(581, 147, S5, 61), but
- the linear programming bound shows that M ≥ 1801 967420 622368 689962 930247 526850 152973 257033 063732 781999 225904 261867 797465 849728 978516 974105 935698 388835 132593 511556 837544 758050 093116 004164 767413 481473 930913 954138 291648 314065 852879 858365 565783 139920 029538 955560 468346 632496 672299 339479 650370 776653 289794 921875 / 4 186643 178459 883219 702862 698615 277144 100265 674265 643053 114986 779948 703766 289759 321388 479230 390841 917294 621365 011643 746087 757152 860527 760881 609721 102126 183400 893270 911698 096754 097070 738492 675774 446837 523823 > 581 [i]