Best Known (104, s)-Sequences in Base 5
(104, 86)-Sequence over F5 — Constructive and digital
Digital (104, 86)-sequence over F5, using
- base reduction for sequences [i] based on digital (9, 86)-sequence over F25, using
- s-reduction based on digital (9, 103)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 9 and N(F) ≥ 104, using
- s-reduction based on digital (9, 103)-sequence over F25, using
(104, 169)-Sequence over F5 — Digital
Digital (104, 169)-sequence over F5, using
- t-expansion [i] based on digital (103, 169)-sequence over F5, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F5 with g(F) = 103 and N(F) ≥ 170, using
(104, 433)-Sequence in Base 5 — Upper bound on s
There is no (104, 434)-sequence in base 5, because
- net from sequence [i] would yield (104, m, 435)-net in base 5 for arbitrarily large m, but
- m-reduction [i] would yield (104, 1735, 435)-net in base 5, but
- extracting embedded OOA [i] would yield OOA(51735, 435, S5, 4, 1631), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 387 274396 984118 985630 007615 889123 262694 599221 205652 531684 780005 486044 412501 442980 998073 625396 697771 601757 649493 196354 837653 992341 656493 751410 615981 404341 287424 695456 656930 570181 066418 157841 031212 921357 060199 834313 300254 507967 806342 089715 303862 674599 080617 188629 052151 340211 262255 984316 975718 432272 800651 855161 662862 138457 326537 112192 147364 437994 458947 026440 487178 076804 253815 577220 766442 158582 642251 329416 067861 039993 893697 484408 517064 354839 046466 497959 696222 435202 787645 298409 524666 558786 489026 920006 304485 874583 256779 234652 844147 847096 966853 834368 858598 969486 260054 406308 895627 406535 082833 498237 418570 650356 571678 907336 472569 577192 610740 484374 426181 746158 750625 156140 388355 343483 538426 294920 039994 245025 308853 587822 909841 678776 285962 809949 468270 895737 287623 498900 460961 527960 321278 881238 350075 992868 055334 102907 589862 416764 778831 763488 111660 782177 454536 096083 926337 177521 911843 847852 028930 201839 928885 852679 651839 907796 651903 610992 476216 750689 517633 607382 789758 432273 816237 739046 281271 181893 905257 443130 457766 531183 982159 279698 214238 010032 216810 001599 391491 967391 309273 276414 563031 382079 541905 851517 181554 581052 374666 420359 671086 566441 819187 614774 455074 566936 557558 830488 655343 682324 883047 840557 992458 343505 859375 / 68 > 51735 [i]
- extracting embedded OOA [i] would yield OOA(51735, 435, S5, 4, 1631), but
- m-reduction [i] would yield (104, 1735, 435)-net in base 5, but