Best Known (91, 130, s)-Nets in Base 5
(91, 130, 400)-Net over F5 — Constructive and digital
Digital (91, 130, 400)-net over F5, using
- 2 times m-reduction [i] based on digital (91, 132, 400)-net over F5, using
- trace code for nets [i] based on digital (25, 66, 200)-net over F25, using
- net from sequence [i] based on digital (25, 199)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 25 and N(F) ≥ 200, using
- net from sequence [i] based on digital (25, 199)-sequence over F25, using
- trace code for nets [i] based on digital (25, 66, 200)-net over F25, using
(91, 130, 944)-Net over F5 — Digital
Digital (91, 130, 944)-net over F5, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(5130, 944, F5, 39) (dual of [944, 814, 40]-code), using
- 813 step Varšamov–Edel lengthening with (ri) = (9, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 33 times 0, 1, 35 times 0, 1, 37 times 0) [i] based on linear OA(539, 40, F5, 39) (dual of [40, 1, 40]-code or 40-arc in PG(38,5)), using
- dual of repetition code with length 40 [i]
- 813 step Varšamov–Edel lengthening with (ri) = (9, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 33 times 0, 1, 35 times 0, 1, 37 times 0) [i] based on linear OA(539, 40, F5, 39) (dual of [40, 1, 40]-code or 40-arc in PG(38,5)), using
(91, 130, 110341)-Net in Base 5 — Upper bound on s
There is no (91, 130, 110342)-net in base 5, because
- 1 times m-reduction [i] would yield (91, 129, 110342)-net in base 5, but
- the generalized Rao bound for nets shows that 5m ≥ 1 469432 138453 695113 804327 052154 746200 293549 670332 726255 380719 848251 428994 573032 245512 148025 > 5129 [i]