Best Known (43, 67, s)-Nets in Base 5
(43, 67, 208)-Net over F5 — Constructive and digital
Digital (43, 67, 208)-net over F5, using
- 1 times m-reduction [i] based on digital (43, 68, 208)-net over F5, using
- trace code for nets [i] based on digital (9, 34, 104)-net over F25, using
- net from sequence [i] based on digital (9, 103)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 9 and N(F) ≥ 104, using
- net from sequence [i] based on digital (9, 103)-sequence over F25, using
- trace code for nets [i] based on digital (9, 34, 104)-net over F25, using
(43, 67, 268)-Net over F5 — Digital
Digital (43, 67, 268)-net over F5, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(567, 268, F5, 24) (dual of [268, 201, 25]-code), using
- 200 step Varšamov–Edel lengthening with (ri) = (6, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 16 times 0) [i] based on linear OA(524, 25, F5, 24) (dual of [25, 1, 25]-code or 25-arc in PG(23,5)), using
- dual of repetition code with length 25 [i]
- 200 step Varšamov–Edel lengthening with (ri) = (6, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 16 times 0) [i] based on linear OA(524, 25, F5, 24) (dual of [25, 1, 25]-code or 25-arc in PG(23,5)), using
(43, 67, 10556)-Net in Base 5 — Upper bound on s
There is no (43, 67, 10557)-net in base 5, because
- the generalized Rao bound for nets shows that 5m ≥ 67773 879087 436145 967001 839209 890864 589108 796625 > 567 [i]