Best Known (19, 78, s)-Nets in Base 5
(19, 78, 43)-Net over F5 — Constructive and digital
Digital (19, 78, 43)-net over F5, using
- t-expansion [i] based on digital (18, 78, 43)-net over F5, using
- net from sequence [i] based on digital (18, 42)-sequence over F5, using
- Niederreiter–Xing sequence construction III based on the algebraic function field F/F5 with g(F) = 17, N(F) = 42, and 1 place with degree 2 [i] based on function field F/F5 with g(F) = 17 and N(F) ≥ 42, using an explicitly constructive algebraic function field [i]
- net from sequence [i] based on digital (18, 42)-sequence over F5, using
(19, 78, 45)-Net over F5 — Digital
Digital (19, 78, 45)-net over F5, using
- net from sequence [i] based on digital (19, 44)-sequence over F5, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F5 with g(F) = 19 and N(F) ≥ 45, using
(19, 78, 137)-Net in Base 5 — Upper bound on s
There is no (19, 78, 138)-net in base 5, because
- extracting embedded orthogonal array [i] would yield OA(578, 138, S5, 59), but
- the linear programming bound shows that M ≥ 31127 200645 050621 710089 689355 834097 696587 533605 328283 850048 721252 535259 296069 827538 291232 350391 064212 700176 818939 727145 987158 788791 228317 487806 934097 746876 834020 080050 102730 583050 369972 397675 155662 000179 290771 484375 / 8700 435072 275061 833514 818580 839023 042577 578062 106574 379765 563453 852399 027660 899258 670459 891149 394691 165967 279082 553628 248030 483723 926972 952914 358491 540856 318771 > 578 [i]