Best Known (71, 96, s)-Nets in Base 5
(71, 96, 306)-Net over F5 — Constructive and digital
Digital (71, 96, 306)-net over F5, using
- (u, u+v)-construction [i] based on
- digital (14, 26, 54)-net over F5, using
- trace code for nets [i] based on digital (1, 13, 27)-net over F25, using
- net from sequence [i] based on digital (1, 26)-sequence over F25, using
- trace code for nets [i] based on digital (1, 13, 27)-net over F25, using
- digital (45, 70, 252)-net over F5, using
- trace code for nets [i] based on digital (10, 35, 126)-net over F25, using
- net from sequence [i] based on digital (10, 125)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 10 and N(F) ≥ 126, using
- the Hermitian function field over F25 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 10 and N(F) ≥ 126, using
- net from sequence [i] based on digital (10, 125)-sequence over F25, using
- trace code for nets [i] based on digital (10, 35, 126)-net over F25, using
- digital (14, 26, 54)-net over F5, using
(71, 96, 1544)-Net over F5 — Digital
Digital (71, 96, 1544)-net over F5, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(596, 1544, F5, 25) (dual of [1544, 1448, 26]-code), using
- 1447 step Varšamov–Edel lengthening with (ri) = (6, 3, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 19 times 0, 1, 21 times 0, 1, 22 times 0, 1, 24 times 0, 1, 26 times 0, 1, 28 times 0, 1, 30 times 0, 1, 32 times 0, 1, 34 times 0, 1, 37 times 0, 1, 40 times 0, 1, 42 times 0, 1, 45 times 0, 1, 49 times 0, 1, 53 times 0, 1, 56 times 0, 1, 60 times 0, 1, 64 times 0, 1, 69 times 0, 1, 74 times 0, 1, 79 times 0, 1, 85 times 0, 1, 91 times 0, 1, 98 times 0) [i] based on linear OA(525, 26, F5, 25) (dual of [26, 1, 26]-code or 26-arc in PG(24,5)), using
- dual of repetition code with length 26 [i]
- 1447 step Varšamov–Edel lengthening with (ri) = (6, 3, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 19 times 0, 1, 21 times 0, 1, 22 times 0, 1, 24 times 0, 1, 26 times 0, 1, 28 times 0, 1, 30 times 0, 1, 32 times 0, 1, 34 times 0, 1, 37 times 0, 1, 40 times 0, 1, 42 times 0, 1, 45 times 0, 1, 49 times 0, 1, 53 times 0, 1, 56 times 0, 1, 60 times 0, 1, 64 times 0, 1, 69 times 0, 1, 74 times 0, 1, 79 times 0, 1, 85 times 0, 1, 91 times 0, 1, 98 times 0) [i] based on linear OA(525, 26, F5, 25) (dual of [26, 1, 26]-code or 26-arc in PG(24,5)), using
(71, 96, 451653)-Net in Base 5 — Upper bound on s
There is no (71, 96, 451654)-net in base 5, because
- 1 times m-reduction [i] would yield (71, 95, 451654)-net in base 5, but
- the generalized Rao bound for nets shows that 5m ≥ 2 524360 290981 386918 247749 864180 605505 539562 784606 817545 765408 199105 > 595 [i]