Best Known (64−10, 64, s)-Nets in Base 64
(64−10, 64, 5037321)-Net over F64 — Constructive and digital
Digital (54, 64, 5037321)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (1, 3, 4161)-net over F64, using
- digital (4, 7, 1677720)-net over F64, using
- s-reduction based on digital (4, 7, large)-net over F64, using
- net defined by OOA [i] based on linear OOA(647, large, F64, 3, 3), using
- appending kth column [i] based on linear OOA(647, large, F64, 2, 3), using
- OAs with strength 3, b ≠ 2, and m > 3 are always embeddable [i] based on linear OA(647, large, F64, 3) (dual of [large, large−7, 4]-code), using
- appending kth column [i] based on linear OOA(647, large, F64, 2, 3), using
- net defined by OOA [i] based on linear OOA(647, large, F64, 3, 3), using
- s-reduction based on digital (4, 7, large)-net over F64, using
- digital (12, 17, 1677720)-net over F64, using
- s-reduction based on digital (12, 17, 4194301)-net over F64, using
- net defined by OOA [i] based on linear OOA(6417, 4194301, F64, 5, 5) (dual of [(4194301, 5), 20971488, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(6417, large, F64, 5) (dual of [large, large−17, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 16777217 | 648−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- OOA 2-folding and stacking with additional row [i] based on linear OA(6417, large, F64, 5) (dual of [large, large−17, 6]-code), using
- net defined by OOA [i] based on linear OOA(6417, 4194301, F64, 5, 5) (dual of [(4194301, 5), 20971488, 6]-NRT-code), using
- s-reduction based on digital (12, 17, 4194301)-net over F64, using
- digital (27, 37, 1677720)-net over F64, using
- net defined by OOA [i] based on linear OOA(6437, 1677720, F64, 10, 10) (dual of [(1677720, 10), 16777163, 11]-NRT-code), using
- OA 5-folding and stacking [i] based on linear OA(6437, 8388600, F64, 10) (dual of [8388600, 8388563, 11]-code), using
- discarding factors / shortening the dual code based on linear OA(6437, large, F64, 10) (dual of [large, large−37, 11]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 16777215 = 644−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
- discarding factors / shortening the dual code based on linear OA(6437, large, F64, 10) (dual of [large, large−37, 11]-code), using
- OA 5-folding and stacking [i] based on linear OA(6437, 8388600, F64, 10) (dual of [8388600, 8388563, 11]-code), using
- net defined by OOA [i] based on linear OOA(6437, 1677720, F64, 10, 10) (dual of [(1677720, 10), 16777163, 11]-NRT-code), using
(64−10, 64, 6710784)-Net in Base 64 — Constructive
(54, 64, 6710784)-net in base 64, using
- base change [i] based on digital (38, 48, 6710784)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 26214)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s, using
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 1, 26214)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s, using
- digital (0, 1, 26214)-net over F256 (see above)
- digital (0, 1, 26214)-net over F256 (see above)
- digital (0, 1, 26214)-net over F256 (see above)
- digital (0, 1, 26214)-net over F256 (see above)
- digital (1, 3, 26214)-net over F256, using
- s-reduction based on digital (1, 3, 65793)-net over F256, using
- digital (1, 3, 26214)-net over F256 (see above)
- digital (1, 4, 26214)-net over F256, using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(2564, 65537, F256, 2, 3) (dual of [(65537, 2), 131070, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- digital (2, 7, 26214)-net over F256, using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- digital (16, 26, 26214)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (2, 7, 32640)-net over F256 (see above)
- digital (9, 19, 13107)-net over F256, using
- net defined by OOA [i] based on linear OOA(25619, 13107, F256, 10, 10) (dual of [(13107, 10), 131051, 11]-NRT-code), using
- OA 5-folding and stacking [i] based on linear OA(25619, 65535, F256, 10) (dual of [65535, 65516, 11]-code), using
- discarding factors / shortening the dual code based on linear OA(25619, 65536, F256, 10) (dual of [65536, 65517, 11]-code), using
- an extension Ce(9) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,9], and designed minimum distance d ≥ |I|+1 = 10 [i]
- discarding factors / shortening the dual code based on linear OA(25619, 65536, F256, 10) (dual of [65536, 65517, 11]-code), using
- OA 5-folding and stacking [i] based on linear OA(25619, 65535, F256, 10) (dual of [65535, 65516, 11]-code), using
- net defined by OOA [i] based on linear OOA(25619, 13107, F256, 10, 10) (dual of [(13107, 10), 131051, 11]-NRT-code), using
- (u, u+v)-construction [i] based on
- digital (0, 0, 26214)-net over F256, using
- generalized (u, u+v)-construction [i] based on
(64−10, 64, large)-Net over F64 — Digital
Digital (54, 64, large)-net over F64, using
- t-expansion [i] based on digital (53, 64, large)-net over F64, using
- 7 times m-reduction [i] based on digital (53, 71, large)-net over F64, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(6471, large, F64, 18) (dual of [large, large−71, 19]-code), using
- 2 times code embedding in larger space [i] based on linear OA(6469, large, F64, 18) (dual of [large, large−69, 19]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 16777215 = 644−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
- 2 times code embedding in larger space [i] based on linear OA(6469, large, F64, 18) (dual of [large, large−69, 19]-code), using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(6471, large, F64, 18) (dual of [large, large−71, 19]-code), using
- 7 times m-reduction [i] based on digital (53, 71, large)-net over F64, using
(64−10, 64, large)-Net in Base 64 — Upper bound on s
There is no (54, 64, large)-net in base 64, because
- 8 times m-reduction [i] would yield (54, 56, large)-net in base 64, but