Best Known (57−11, 57, s)-Nets in Base 64
(57−11, 57, 1943960)-Net over F64 — Constructive and digital
Digital (46, 57, 1943960)-net over F64, using
- (u, u+v)-construction [i] based on
- digital (11, 16, 266240)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 4160)-net over F64, using
- s-reduction based on digital (0, 0, s)-net over F64 with arbitrarily large s, using
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 0, 4160)-net over F64 (see above)
- digital (0, 1, 4160)-net over F64, using
- s-reduction based on digital (0, 1, s)-net over F64 with arbitrarily large s, using
- digital (0, 1, 4160)-net over F64 (see above)
- digital (0, 1, 4160)-net over F64 (see above)
- digital (1, 3, 4160)-net over F64, using
- s-reduction based on digital (1, 3, 4161)-net over F64, using
- digital (5, 10, 4160)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 65)-net over F64, using
- s-reduction based on digital (0, 0, s)-net over F64 with arbitrarily large s (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 1, 65)-net over F64, using
- s-reduction based on digital (0, 1, s)-net over F64 with arbitrarily large s (see above)
- digital (0, 1, 65)-net over F64 (see above)
- digital (0, 1, 65)-net over F64 (see above)
- digital (0, 2, 65)-net over F64, using
- digital (0, 5, 65)-net over F64, using
- net from sequence [i] based on digital (0, 64)-sequence over F64, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 0 and N(F) ≥ 65, using
- the rational function field F64(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 64)-sequence over F64, using
- digital (0, 0, 65)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 4160)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (30, 41, 1677720)-net over F64, using
- net defined by OOA [i] based on linear OOA(6441, 1677720, F64, 11, 11) (dual of [(1677720, 11), 18454879, 12]-NRT-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(6441, 8388601, F64, 11) (dual of [8388601, 8388560, 12]-code), using
- discarding factors / shortening the dual code based on linear OA(6441, large, F64, 11) (dual of [large, large−41, 12]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 16777217 | 648−1, defining interval I = [0,5], and minimum distance d ≥ |{−5,−4,…,5}|+1 = 12 (BCH-bound) [i]
- discarding factors / shortening the dual code based on linear OA(6441, large, F64, 11) (dual of [large, large−41, 12]-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(6441, 8388601, F64, 11) (dual of [8388601, 8388560, 12]-code), using
- net defined by OOA [i] based on linear OOA(6441, 1677720, F64, 11, 11) (dual of [(1677720, 11), 18454879, 12]-NRT-code), using
- digital (11, 16, 266240)-net over F64, using
(57−11, 57, 2726297)-Net in Base 64 — Constructive
(46, 57, 2726297)-net in base 64, using
- (u, u+v)-construction [i] based on
- (11, 16, 1048577)-net in base 64, using
- net defined by OOA [i] based on OOA(6416, 1048577, S64, 5, 5), using
- OOA 2-folding and stacking with additional row [i] based on OA(6416, 2097155, S64, 5), using
- discarding parts of the base [i] based on linear OA(12813, 2097155, F128, 5) (dual of [2097155, 2097142, 6]-code), using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- linear OA(12813, 2097152, F128, 5) (dual of [2097152, 2097139, 6]-code), using an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(12810, 2097152, F128, 4) (dual of [2097152, 2097142, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(1280, 3, F128, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(1280, s, F128, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- discarding parts of the base [i] based on linear OA(12813, 2097155, F128, 5) (dual of [2097155, 2097142, 6]-code), using
- OOA 2-folding and stacking with additional row [i] based on OA(6416, 2097155, S64, 5), using
- net defined by OOA [i] based on OOA(6416, 1048577, S64, 5, 5), using
- digital (30, 41, 1677720)-net over F64, using
- net defined by OOA [i] based on linear OOA(6441, 1677720, F64, 11, 11) (dual of [(1677720, 11), 18454879, 12]-NRT-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(6441, 8388601, F64, 11) (dual of [8388601, 8388560, 12]-code), using
- discarding factors / shortening the dual code based on linear OA(6441, large, F64, 11) (dual of [large, large−41, 12]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 16777217 | 648−1, defining interval I = [0,5], and minimum distance d ≥ |{−5,−4,…,5}|+1 = 12 (BCH-bound) [i]
- discarding factors / shortening the dual code based on linear OA(6441, large, F64, 11) (dual of [large, large−41, 12]-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(6441, 8388601, F64, 11) (dual of [8388601, 8388560, 12]-code), using
- net defined by OOA [i] based on linear OOA(6441, 1677720, F64, 11, 11) (dual of [(1677720, 11), 18454879, 12]-NRT-code), using
- (11, 16, 1048577)-net in base 64, using
(57−11, 57, large)-Net over F64 — Digital
Digital (46, 57, large)-net over F64, using
- t-expansion [i] based on digital (44, 57, large)-net over F64, using
- 2 times m-reduction [i] based on digital (44, 59, large)-net over F64, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(6459, large, F64, 15) (dual of [large, large−59, 16]-code), using
- 2 times code embedding in larger space [i] based on linear OA(6457, large, F64, 15) (dual of [large, large−57, 16]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 16777217 | 648−1, defining interval I = [0,7], and minimum distance d ≥ |{−7,−6,…,7}|+1 = 16 (BCH-bound) [i]
- 2 times code embedding in larger space [i] based on linear OA(6457, large, F64, 15) (dual of [large, large−57, 16]-code), using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(6459, large, F64, 15) (dual of [large, large−59, 16]-code), using
- 2 times m-reduction [i] based on digital (44, 59, large)-net over F64, using
(57−11, 57, large)-Net in Base 64 — Upper bound on s
There is no (46, 57, large)-net in base 64, because
- 9 times m-reduction [i] would yield (46, 48, large)-net in base 64, but