Best Known (69−11, 69, s)-Nets in Base 64
(69−11, 69, 5299465)-Net over F64 — Constructive and digital
Digital (58, 69, 5299465)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (2, 4, 266305)-net over F64, using
- digital (4, 7, 1677720)-net over F64, using
- s-reduction based on digital (4, 7, large)-net over F64, using
- net defined by OOA [i] based on linear OOA(647, large, F64, 3, 3), using
- appending kth column [i] based on linear OOA(647, large, F64, 2, 3), using
- OAs with strength 3, b ≠ 2, and m > 3 are always embeddable [i] based on linear OA(647, large, F64, 3) (dual of [large, large−7, 4]-code), using
- appending kth column [i] based on linear OOA(647, large, F64, 2, 3), using
- net defined by OOA [i] based on linear OOA(647, large, F64, 3, 3), using
- s-reduction based on digital (4, 7, large)-net over F64, using
- digital (12, 17, 1677720)-net over F64, using
- s-reduction based on digital (12, 17, 4194301)-net over F64, using
- net defined by OOA [i] based on linear OOA(6417, 4194301, F64, 5, 5) (dual of [(4194301, 5), 20971488, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(6417, large, F64, 5) (dual of [large, large−17, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 16777217 | 648−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- OOA 2-folding and stacking with additional row [i] based on linear OA(6417, large, F64, 5) (dual of [large, large−17, 6]-code), using
- net defined by OOA [i] based on linear OOA(6417, 4194301, F64, 5, 5) (dual of [(4194301, 5), 20971488, 6]-NRT-code), using
- s-reduction based on digital (12, 17, 4194301)-net over F64, using
- digital (30, 41, 1677720)-net over F64, using
- net defined by OOA [i] based on linear OOA(6441, 1677720, F64, 11, 11) (dual of [(1677720, 11), 18454879, 12]-NRT-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(6441, 8388601, F64, 11) (dual of [8388601, 8388560, 12]-code), using
- discarding factors / shortening the dual code based on linear OA(6441, large, F64, 11) (dual of [large, large−41, 12]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 16777217 | 648−1, defining interval I = [0,5], and minimum distance d ≥ |{−5,−4,…,5}|+1 = 12 (BCH-bound) [i]
- discarding factors / shortening the dual code based on linear OA(6441, large, F64, 11) (dual of [large, large−41, 12]-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(6441, 8388601, F64, 11) (dual of [8388601, 8388560, 12]-code), using
- net defined by OOA [i] based on linear OOA(6441, 1677720, F64, 11, 11) (dual of [(1677720, 11), 18454879, 12]-NRT-code), using
(69−11, 69, 6710784)-Net in Base 64 — Constructive
(58, 69, 6710784)-net in base 64, using
- 641 times duplication [i] based on (57, 68, 6710784)-net in base 64, using
- base change [i] based on digital (40, 51, 6710784)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 26214)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s, using
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 0, 26214)-net over F256 (see above)
- digital (0, 1, 26214)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s, using
- digital (0, 1, 26214)-net over F256 (see above)
- digital (0, 1, 26214)-net over F256 (see above)
- digital (0, 1, 26214)-net over F256 (see above)
- digital (0, 1, 26214)-net over F256 (see above)
- digital (0, 1, 26214)-net over F256 (see above)
- digital (1, 3, 26214)-net over F256, using
- s-reduction based on digital (1, 3, 65793)-net over F256, using
- digital (1, 3, 26214)-net over F256 (see above)
- digital (1, 4, 26214)-net over F256, using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(2564, 65537, F256, 2, 3) (dual of [(65537, 2), 131070, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- digital (2, 7, 26214)-net over F256, using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- digital (17, 28, 26214)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (2, 7, 32640)-net over F256 (see above)
- digital (10, 21, 13107)-net over F256, using
- net defined by OOA [i] based on linear OOA(25621, 13107, F256, 11, 11) (dual of [(13107, 11), 144156, 12]-NRT-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(25621, 65536, F256, 11) (dual of [65536, 65515, 12]-code), using
- an extension Ce(10) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- OOA 5-folding and stacking with additional row [i] based on linear OA(25621, 65536, F256, 11) (dual of [65536, 65515, 12]-code), using
- net defined by OOA [i] based on linear OOA(25621, 13107, F256, 11, 11) (dual of [(13107, 11), 144156, 12]-NRT-code), using
- (u, u+v)-construction [i] based on
- digital (0, 0, 26214)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- base change [i] based on digital (40, 51, 6710784)-net over F256, using
(69−11, 69, large)-Net over F64 — Digital
Digital (58, 69, large)-net over F64, using
- t-expansion [i] based on digital (57, 69, large)-net over F64, using
- 7 times m-reduction [i] based on digital (57, 76, large)-net over F64, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(6476, large, F64, 19) (dual of [large, large−76, 20]-code), using
- 3 times code embedding in larger space [i] based on linear OA(6473, large, F64, 19) (dual of [large, large−73, 20]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 16777217 | 648−1, defining interval I = [0,9], and minimum distance d ≥ |{−9,−8,…,9}|+1 = 20 (BCH-bound) [i]
- 3 times code embedding in larger space [i] based on linear OA(6473, large, F64, 19) (dual of [large, large−73, 20]-code), using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(6476, large, F64, 19) (dual of [large, large−76, 20]-code), using
- 7 times m-reduction [i] based on digital (57, 76, large)-net over F64, using
(69−11, 69, large)-Net in Base 64 — Upper bound on s
There is no (58, 69, large)-net in base 64, because
- 9 times m-reduction [i] would yield (58, 60, large)-net in base 64, but