Best Known (73−11, 73, s)-Nets in Base 64
(73−11, 73, 6715041)-Net over F64 — Constructive and digital
Digital (62, 73, 6715041)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (1, 3, 4161)-net over F64, using
- digital (3, 5, 1677720)-net over F64, using
- s-reduction based on digital (3, 5, large)-net over F64, using
- digital (4, 7, 1677720)-net over F64, using
- s-reduction based on digital (4, 7, large)-net over F64, using
- net defined by OOA [i] based on linear OOA(647, large, F64, 3, 3), using
- appending kth column [i] based on linear OOA(647, large, F64, 2, 3), using
- OAs with strength 3, b ≠ 2, and m > 3 are always embeddable [i] based on linear OA(647, large, F64, 3) (dual of [large, large−7, 4]-code), using
- appending kth column [i] based on linear OOA(647, large, F64, 2, 3), using
- net defined by OOA [i] based on linear OOA(647, large, F64, 3, 3), using
- s-reduction based on digital (4, 7, large)-net over F64, using
- digital (12, 17, 1677720)-net over F64, using
- s-reduction based on digital (12, 17, 4194301)-net over F64, using
- net defined by OOA [i] based on linear OOA(6417, 4194301, F64, 5, 5) (dual of [(4194301, 5), 20971488, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(6417, large, F64, 5) (dual of [large, large−17, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 16777217 | 648−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- OOA 2-folding and stacking with additional row [i] based on linear OA(6417, large, F64, 5) (dual of [large, large−17, 6]-code), using
- net defined by OOA [i] based on linear OOA(6417, 4194301, F64, 5, 5) (dual of [(4194301, 5), 20971488, 6]-NRT-code), using
- s-reduction based on digital (12, 17, 4194301)-net over F64, using
- digital (30, 41, 1677720)-net over F64, using
- net defined by OOA [i] based on linear OOA(6441, 1677720, F64, 11, 11) (dual of [(1677720, 11), 18454879, 12]-NRT-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(6441, 8388601, F64, 11) (dual of [8388601, 8388560, 12]-code), using
- discarding factors / shortening the dual code based on linear OA(6441, large, F64, 11) (dual of [large, large−41, 12]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 16777217 | 648−1, defining interval I = [0,5], and minimum distance d ≥ |{−5,−4,…,5}|+1 = 12 (BCH-bound) [i]
- discarding factors / shortening the dual code based on linear OA(6441, large, F64, 11) (dual of [large, large−41, 12]-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(6441, 8388601, F64, 11) (dual of [8388601, 8388560, 12]-code), using
- net defined by OOA [i] based on linear OOA(6441, 1677720, F64, 11, 11) (dual of [(1677720, 11), 18454879, 12]-NRT-code), using
(73−11, 73, large)-Net in Base 64 — Constructive
(62, 73, large)-net in base 64, using
- 641 times duplication [i] based on (61, 72, large)-net in base 64, using
- base change [i] based on digital (43, 54, large)-net over F256, using
- 2562 times duplication [i] based on digital (41, 52, large)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 32640)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s, using
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 0, 32640)-net over F256 (see above)
- digital (0, 1, 32640)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s, using
- digital (0, 1, 32640)-net over F256 (see above)
- digital (0, 1, 32640)-net over F256 (see above)
- digital (0, 1, 32640)-net over F256 (see above)
- digital (0, 1, 32640)-net over F256 (see above)
- digital (0, 1, 32640)-net over F256 (see above)
- digital (1, 3, 32640)-net over F256, using
- s-reduction based on digital (1, 3, 65793)-net over F256, using
- digital (1, 3, 32640)-net over F256 (see above)
- digital (1, 4, 32640)-net over F256, using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(2564, 65537, F256, 2, 3) (dual of [(65537, 2), 131070, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- digital (2, 7, 32640)-net over F256, using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- digital (18, 29, 65792)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 257)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 1, 257)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s (see above)
- digital (0, 1, 257)-net over F256 (see above)
- digital (0, 1, 257)-net over F256 (see above)
- digital (0, 1, 257)-net over F256 (see above)
- digital (0, 1, 257)-net over F256 (see above)
- digital (0, 1, 257)-net over F256 (see above)
- digital (0, 2, 257)-net over F256, using
- digital (0, 2, 257)-net over F256 (see above)
- digital (0, 3, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using
- the rational function field F256(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- digital (0, 5, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256 (see above)
- digital (0, 11, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256 (see above)
- digital (0, 0, 257)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 32640)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- 2562 times duplication [i] based on digital (41, 52, large)-net over F256, using
- base change [i] based on digital (43, 54, large)-net over F256, using
(73−11, 73, large)-Net over F64 — Digital
Digital (62, 73, large)-net over F64, using
- t-expansion [i] based on digital (60, 73, large)-net over F64, using
- 7 times m-reduction [i] based on digital (60, 80, large)-net over F64, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(6480, large, F64, 20) (dual of [large, large−80, 21]-code), using
- 3 times code embedding in larger space [i] based on linear OA(6477, large, F64, 20) (dual of [large, large−77, 21]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 16777215 = 644−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
- 3 times code embedding in larger space [i] based on linear OA(6477, large, F64, 20) (dual of [large, large−77, 21]-code), using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(6480, large, F64, 20) (dual of [large, large−80, 21]-code), using
- 7 times m-reduction [i] based on digital (60, 80, large)-net over F64, using
(73−11, 73, large)-Net in Base 64 — Upper bound on s
There is no (62, 73, large)-net in base 64, because
- 9 times m-reduction [i] would yield (62, 64, large)-net in base 64, but