Best Known (79−40, 79, s)-Nets in Base 64
(79−40, 79, 513)-Net over F64 — Constructive and digital
Digital (39, 79, 513)-net over F64, using
- t-expansion [i] based on digital (28, 79, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
(79−40, 79, 1366)-Net over F64 — Digital
Digital (39, 79, 1366)-net over F64, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(6479, 1366, F64, 3, 40) (dual of [(1366, 3), 4019, 41]-NRT-code), using
- OOA 3-folding [i] based on linear OA(6479, 4098, F64, 40) (dual of [4098, 4019, 41]-code), using
- construction X applied to Ce(39) ⊂ Ce(38) [i] based on
- linear OA(6479, 4096, F64, 40) (dual of [4096, 4017, 41]-code), using an extension Ce(39) of the primitive narrow-sense BCH-code C(I) with length 4095 = 642−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(6477, 4096, F64, 39) (dual of [4096, 4019, 40]-code), using an extension Ce(38) of the primitive narrow-sense BCH-code C(I) with length 4095 = 642−1, defining interval I = [1,38], and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(640, s, F64, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(39) ⊂ Ce(38) [i] based on
- OOA 3-folding [i] based on linear OA(6479, 4098, F64, 40) (dual of [4098, 4019, 41]-code), using
(79−40, 79, 1796280)-Net in Base 64 — Upper bound on s
There is no (39, 79, 1796281)-net in base 64, because
- the generalized Rao bound for nets shows that 64m ≥ 48777 480993 101599 110161 090483 703551 907358 042210 313289 608002 603238 793380 180904 152486 353731 923892 281677 423759 689781 747835 167088 745042 756256 281334 > 6479 [i]