Best Known (77−44, 77, s)-Nets in Base 64
(77−44, 77, 513)-Net over F64 — Constructive and digital
Digital (33, 77, 513)-net over F64, using
- t-expansion [i] based on digital (28, 77, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
(77−44, 77, 515)-Net over F64 — Digital
Digital (33, 77, 515)-net over F64, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(6477, 515, F64, 3, 44) (dual of [(515, 3), 1468, 45]-NRT-code), using
- strength reduction [i] based on linear OOA(6477, 515, F64, 3, 45) (dual of [(515, 3), 1468, 46]-NRT-code), using
- construction X applied to AG(3;F,1490P) ⊂ AG(3;F,1495P) [i] based on
- linear OOA(6473, 512, F64, 3, 45) (dual of [(512, 3), 1463, 46]-NRT-code), using algebraic-geometric NRT-code AG(3;F,1490P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- linear OOA(6468, 512, F64, 3, 40) (dual of [(512, 3), 1468, 41]-NRT-code), using algebraic-geometric NRT-code AG(3;F,1495P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513 (see above)
- linear OOA(644, 3, F64, 3, 4) (dual of [(3, 3), 5, 5]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(644, 64, F64, 3, 4) (dual of [(64, 3), 188, 5]-NRT-code), using
- Reed–Solomon NRT-code RS(3;188,64) [i]
- discarding factors / shortening the dual code based on linear OOA(644, 64, F64, 3, 4) (dual of [(64, 3), 188, 5]-NRT-code), using
- linear OOA(6473, 512, F64, 3, 45) (dual of [(512, 3), 1463, 46]-NRT-code), using algebraic-geometric NRT-code AG(3;F,1490P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- construction X applied to AG(3;F,1490P) ⊂ AG(3;F,1495P) [i] based on
- strength reduction [i] based on linear OOA(6477, 515, F64, 3, 45) (dual of [(515, 3), 1468, 46]-NRT-code), using
(77−44, 77, 301388)-Net in Base 64 — Upper bound on s
There is no (33, 77, 301389)-net in base 64, because
- the generalized Rao bound for nets shows that 64m ≥ 11 908914 255979 594370 665662 694522 226673 888013 524848 311606 183092 446404 708960 364447 787566 160055 510820 989595 802209 825766 667570 956217 888468 400080 > 6477 [i]