Best Known (87−44, 87, s)-Nets in Base 64
(87−44, 87, 513)-Net over F64 — Constructive and digital
Digital (43, 87, 513)-net over F64, using
- t-expansion [i] based on digital (28, 87, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
(87−44, 87, 1403)-Net over F64 — Digital
Digital (43, 87, 1403)-net over F64, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(6487, 1403, F64, 2, 44) (dual of [(1403, 2), 2719, 45]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(6487, 2049, F64, 2, 44) (dual of [(2049, 2), 4011, 45]-NRT-code), using
- OOA 2-folding [i] based on linear OA(6487, 4098, F64, 44) (dual of [4098, 4011, 45]-code), using
- construction X applied to Ce(43) ⊂ Ce(42) [i] based on
- linear OA(6487, 4096, F64, 44) (dual of [4096, 4009, 45]-code), using an extension Ce(43) of the primitive narrow-sense BCH-code C(I) with length 4095 = 642−1, defining interval I = [1,43], and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(6485, 4096, F64, 43) (dual of [4096, 4011, 44]-code), using an extension Ce(42) of the primitive narrow-sense BCH-code C(I) with length 4095 = 642−1, defining interval I = [1,42], and designed minimum distance d ≥ |I|+1 = 43 [i]
- linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(640, s, F64, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(43) ⊂ Ce(42) [i] based on
- OOA 2-folding [i] based on linear OA(6487, 4098, F64, 44) (dual of [4098, 4011, 45]-code), using
- discarding factors / shortening the dual code based on linear OOA(6487, 2049, F64, 2, 44) (dual of [(2049, 2), 4011, 45]-NRT-code), using
(87−44, 87, 1995863)-Net in Base 64 — Upper bound on s
There is no (43, 87, 1995864)-net in base 64, because
- the generalized Rao bound for nets shows that 64m ≥ 13 729610 482149 444395 364987 990171 390582 566017 223017 971814 669317 252489 875802 722040 894767 291532 001655 822007 793573 143679 937162 189449 741286 336221 868710 370284 695355 > 6487 [i]