Best Known (35, 35+46, s)-Nets in Base 64
(35, 35+46, 513)-Net over F64 — Constructive and digital
Digital (35, 81, 513)-net over F64, using
- t-expansion [i] based on digital (28, 81, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
(35, 35+46, 519)-Net over F64 — Digital
Digital (35, 81, 519)-net over F64, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(6481, 519, F64, 2, 46) (dual of [(519, 2), 957, 47]-NRT-code), using
- construction X applied to AG(2;F,977P) ⊂ AG(2;F,985P) [i] based on
- linear OOA(6474, 512, F64, 2, 46) (dual of [(512, 2), 950, 47]-NRT-code), using algebraic-geometric NRT-code AG(2;F,977P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- linear OOA(6466, 512, F64, 2, 38) (dual of [(512, 2), 958, 39]-NRT-code), using algebraic-geometric NRT-code AG(2;F,985P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513 (see above)
- linear OOA(647, 7, F64, 2, 7) (dual of [(7, 2), 7, 8]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(647, 64, F64, 2, 7) (dual of [(64, 2), 121, 8]-NRT-code), using
- Reed–Solomon NRT-code RS(2;121,64) [i]
- discarding factors / shortening the dual code based on linear OOA(647, 64, F64, 2, 7) (dual of [(64, 2), 121, 8]-NRT-code), using
- linear OOA(6474, 512, F64, 2, 46) (dual of [(512, 2), 950, 47]-NRT-code), using algebraic-geometric NRT-code AG(2;F,977P) [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- construction X applied to AG(2;F,977P) ⊂ AG(2;F,985P) [i] based on
(35, 35+46, 343554)-Net in Base 64 — Upper bound on s
There is no (35, 81, 343555)-net in base 64, because
- the generalized Rao bound for nets shows that 64m ≥ 199 794224 125048 918026 699424 311380 980877 263248 109887 789325 558697 997074 814969 901702 790931 016259 396955 086654 621562 544000 132709 561894 868201 926592 242176 > 6481 [i]