Best Known (5, 10, s)-Nets in Base 64
(5, 10, 4160)-Net over F64 — Constructive and digital
Digital (5, 10, 4160)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 65)-net over F64, using
- s-reduction based on digital (0, 0, s)-net over F64 with arbitrarily large s, using
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 0, 65)-net over F64 (see above)
- digital (0, 1, 65)-net over F64, using
- s-reduction based on digital (0, 1, s)-net over F64 with arbitrarily large s, using
- digital (0, 1, 65)-net over F64 (see above)
- digital (0, 1, 65)-net over F64 (see above)
- digital (0, 2, 65)-net over F64, using
- digital (0, 5, 65)-net over F64, using
- net from sequence [i] based on digital (0, 64)-sequence over F64, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 0 and N(F) ≥ 65, using
- the rational function field F64(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 64)-sequence over F64, using
- digital (0, 0, 65)-net over F64, using
(5, 10, 7561)-Net over F64 — Digital
Digital (5, 10, 7561)-net over F64, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(6410, 7561, F64, 5) (dual of [7561, 7551, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(6410, 8066, F64, 5) (dual of [8066, 8056, 6]-code), using
- (u, u+v)-construction [i] based on
- linear OA(643, 4033, F64, 2) (dual of [4033, 4030, 3]-code), using
- discarding factors / shortening the dual code based on linear OA(643, 4161, F64, 2) (dual of [4161, 4158, 3]-code), using
- Hamming code H(3,64) [i]
- discarding factors / shortening the dual code based on linear OA(643, 4161, F64, 2) (dual of [4161, 4158, 3]-code), using
- linear OA(647, 4033, F64, 5) (dual of [4033, 4026, 6]-code), using
- linear OA(643, 4033, F64, 2) (dual of [4033, 4030, 3]-code), using
- (u, u+v)-construction [i] based on
- discarding factors / shortening the dual code based on linear OA(6410, 8066, F64, 5) (dual of [8066, 8056, 6]-code), using
(5, 10, 32640)-Net in Base 64 — Constructive
(5, 10, 32640)-net in base 64, using
- net defined by OOA [i] based on OOA(6410, 32640, S64, 5, 5), using
- OOA 2-folding and stacking with additional row [i] based on OA(6410, 65281, S64, 5), using
- discarding parts of the base [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- OOA 2-folding and stacking with additional row [i] based on OA(6410, 65281, S64, 5), using
(5, 10, 3012896)-Net in Base 64 — Upper bound on s
There is no (5, 10, 3012897)-net in base 64, because
- 1 times m-reduction [i] would yield (5, 9, 3012897)-net in base 64, but
- the generalized Rao bound for nets shows that 64m ≥ 18014 401024 781680 > 649 [i]