Best Known (16, 21, s)-Nets in Base 64
(16, 21, large)-Net over F64 — Constructive and digital
Digital (16, 21, large)-net over F64, using
- 641 times duplication [i] based on digital (15, 20, large)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 131073)-net over F64, using
- s-reduction based on digital (0, 0, s)-net over F64 with arbitrarily large s, using
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 1, 131073)-net over F64, using
- s-reduction based on digital (0, 1, s)-net over F64 with arbitrarily large s, using
- digital (0, 1, 131073)-net over F64 (see above)
- digital (0, 1, 131073)-net over F64 (see above)
- digital (2, 4, 131073)-net over F64, using
- s-reduction based on digital (2, 4, 266305)-net over F64, using
- digital (8, 13, 131073)-net over F64, using
- net defined by OOA [i] based on linear OOA(6413, 131073, F64, 5, 5) (dual of [(131073, 5), 655352, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(6413, 262147, F64, 5) (dual of [262147, 262134, 6]-code), using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- linear OA(6413, 262144, F64, 5) (dual of [262144, 262131, 6]-code), using an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 262143 = 643−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(6410, 262144, F64, 4) (dual of [262144, 262134, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 262143 = 643−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(640, 3, F64, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(640, s, F64, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- OOA 2-folding and stacking with additional row [i] based on linear OA(6413, 262147, F64, 5) (dual of [262147, 262134, 6]-code), using
- net defined by OOA [i] based on linear OOA(6413, 131073, F64, 5, 5) (dual of [(131073, 5), 655352, 6]-NRT-code), using
- digital (0, 0, 131073)-net over F64, using
- generalized (u, u+v)-construction [i] based on
(16, 21, large)-Net in Base 64 — Upper bound on s
There is no (16, 21, large)-net in base 64, because
- 3 times m-reduction [i] would yield (16, 18, large)-net in base 64, but