Best Known (45, 91, s)-Nets in Base 64
(45, 91, 513)-Net over F64 — Constructive and digital
Digital (45, 91, 513)-net over F64, using
- t-expansion [i] based on digital (28, 91, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
(45, 91, 1446)-Net over F64 — Digital
Digital (45, 91, 1446)-net over F64, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(6491, 1446, F64, 2, 46) (dual of [(1446, 2), 2801, 47]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(6491, 2049, F64, 2, 46) (dual of [(2049, 2), 4007, 47]-NRT-code), using
- OOA 2-folding [i] based on linear OA(6491, 4098, F64, 46) (dual of [4098, 4007, 47]-code), using
- construction X applied to Ce(45) ⊂ Ce(44) [i] based on
- linear OA(6491, 4096, F64, 46) (dual of [4096, 4005, 47]-code), using an extension Ce(45) of the primitive narrow-sense BCH-code C(I) with length 4095 = 642−1, defining interval I = [1,45], and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(6489, 4096, F64, 45) (dual of [4096, 4007, 46]-code), using an extension Ce(44) of the primitive narrow-sense BCH-code C(I) with length 4095 = 642−1, defining interval I = [1,44], and designed minimum distance d ≥ |I|+1 = 45 [i]
- linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(640, s, F64, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(45) ⊂ Ce(44) [i] based on
- OOA 2-folding [i] based on linear OA(6491, 4098, F64, 46) (dual of [4098, 4007, 47]-code), using
- discarding factors / shortening the dual code based on linear OOA(6491, 2049, F64, 2, 46) (dual of [(2049, 2), 4007, 47]-NRT-code), using
(45, 91, 2095577)-Net in Base 64 — Upper bound on s
There is no (45, 91, 2095578)-net in base 64, because
- the generalized Rao bound for nets shows that 64m ≥ 230 345897 503102 038265 484871 190271 023620 824750 679689 974638 538095 083917 237402 163316 845927 525360 760347 657352 152261 338480 498449 080819 943926 606343 704417 060408 554105 960900 > 6491 [i]