Best Known (76, 76+32, s)-Nets in Base 7
(76, 76+32, 688)-Net over F7 — Constructive and digital
Digital (76, 108, 688)-net over F7, using
- 2 times m-reduction [i] based on digital (76, 110, 688)-net over F7, using
- trace code for nets [i] based on digital (21, 55, 344)-net over F49, using
- net from sequence [i] based on digital (21, 343)-sequence over F49, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F49 with g(F) = 21 and N(F) ≥ 344, using
- the Hermitian function field over F49 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F49 with g(F) = 21 and N(F) ≥ 344, using
- net from sequence [i] based on digital (21, 343)-sequence over F49, using
- trace code for nets [i] based on digital (21, 55, 344)-net over F49, using
(76, 76+32, 1836)-Net over F7 — Digital
Digital (76, 108, 1836)-net over F7, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(7108, 1836, F7, 32) (dual of [1836, 1728, 33]-code), using
- 1727 step Varšamov–Edel lengthening with (ri) = (6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 16 times 0, 1, 17 times 0, 1, 19 times 0, 1, 19 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 26 times 0, 1, 28 times 0, 1, 29 times 0, 1, 32 times 0, 1, 34 times 0, 1, 36 times 0, 1, 38 times 0, 1, 41 times 0, 1, 44 times 0, 1, 47 times 0, 1, 50 times 0, 1, 54 times 0, 1, 57 times 0, 1, 61 times 0, 1, 65 times 0, 1, 69 times 0, 1, 74 times 0, 1, 79 times 0, 1, 84 times 0, 1, 90 times 0, 1, 96 times 0, 1, 102 times 0, 1, 109 times 0) [i] based on linear OA(732, 33, F7, 32) (dual of [33, 1, 33]-code or 33-arc in PG(31,7)), using
- dual of repetition code with length 33 [i]
- 1727 step Varšamov–Edel lengthening with (ri) = (6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 16 times 0, 1, 17 times 0, 1, 19 times 0, 1, 19 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 26 times 0, 1, 28 times 0, 1, 29 times 0, 1, 32 times 0, 1, 34 times 0, 1, 36 times 0, 1, 38 times 0, 1, 41 times 0, 1, 44 times 0, 1, 47 times 0, 1, 50 times 0, 1, 54 times 0, 1, 57 times 0, 1, 61 times 0, 1, 65 times 0, 1, 69 times 0, 1, 74 times 0, 1, 79 times 0, 1, 84 times 0, 1, 90 times 0, 1, 96 times 0, 1, 102 times 0, 1, 109 times 0) [i] based on linear OA(732, 33, F7, 32) (dual of [33, 1, 33]-code or 33-arc in PG(31,7)), using
(76, 76+32, 573840)-Net in Base 7 — Upper bound on s
There is no (76, 108, 573841)-net in base 7, because
- the generalized Rao bound for nets shows that 7m ≥ 18 646130 282171 587213 360838 784039 170642 038906 380893 357079 337047 917454 367480 482063 142601 973121 > 7108 [i]