Best Known (55, 55+33, s)-Nets in Base 7
(55, 55+33, 122)-Net over F7 — Constructive and digital
Digital (55, 88, 122)-net over F7, using
- trace code for nets [i] based on digital (11, 44, 61)-net over F49, using
- net from sequence [i] based on digital (11, 60)-sequence over F49, using
(55, 55+33, 466)-Net over F7 — Digital
Digital (55, 88, 466)-net over F7, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(788, 466, F7, 33) (dual of [466, 378, 34]-code), using
- 377 step Varšamov–Edel lengthening with (ri) = (6, 3, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 23 times 0, 1, 25 times 0) [i] based on linear OA(733, 34, F7, 33) (dual of [34, 1, 34]-code or 34-arc in PG(32,7)), using
- dual of repetition code with length 34 [i]
- 377 step Varšamov–Edel lengthening with (ri) = (6, 3, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 23 times 0, 1, 25 times 0) [i] based on linear OA(733, 34, F7, 33) (dual of [34, 1, 34]-code or 34-arc in PG(32,7)), using
(55, 55+33, 44617)-Net in Base 7 — Upper bound on s
There is no (55, 88, 44618)-net in base 7, because
- 1 times m-reduction [i] would yield (55, 87, 44618)-net in base 7, but
- the generalized Rao bound for nets shows that 7m ≥ 33 384512 196216 498813 959247 591992 068675 215245 041056 683834 505498 005581 245217 > 787 [i]