Best Known (92−34, 92, s)-Nets in Base 7
(92−34, 92, 124)-Net over F7 — Constructive and digital
Digital (58, 92, 124)-net over F7, using
- trace code for nets [i] based on digital (12, 46, 62)-net over F49, using
- net from sequence [i] based on digital (12, 61)-sequence over F49, using
(92−34, 92, 515)-Net over F7 — Digital
Digital (58, 92, 515)-net over F7, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(792, 515, F7, 34) (dual of [515, 423, 35]-code), using
- 422 step Varšamov–Edel lengthening with (ri) = (6, 3, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 25 times 0, 1, 27 times 0) [i] based on linear OA(734, 35, F7, 34) (dual of [35, 1, 35]-code or 35-arc in PG(33,7)), using
- dual of repetition code with length 35 [i]
- 422 step Varšamov–Edel lengthening with (ri) = (6, 3, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 25 times 0, 1, 27 times 0) [i] based on linear OA(734, 35, F7, 34) (dual of [35, 1, 35]-code or 35-arc in PG(33,7)), using
(92−34, 92, 44787)-Net in Base 7 — Upper bound on s
There is no (58, 92, 44788)-net in base 7, because
- the generalized Rao bound for nets shows that 7m ≥ 561095 220889 780907 769554 215875 093419 148282 407228 534771 625421 563349 502138 280889 > 792 [i]