Best Known (167−52, 167, s)-Nets in Base 8
(167−52, 167, 1026)-Net over F8 — Constructive and digital
Digital (115, 167, 1026)-net over F8, using
- t-expansion [i] based on digital (114, 167, 1026)-net over F8, using
- 5 times m-reduction [i] based on digital (114, 172, 1026)-net over F8, using
- trace code for nets [i] based on digital (28, 86, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- trace code for nets [i] based on digital (28, 86, 513)-net over F64, using
- 5 times m-reduction [i] based on digital (114, 172, 1026)-net over F8, using
(167−52, 167, 2596)-Net over F8 — Digital
Digital (115, 167, 2596)-net over F8, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(8167, 2596, F8, 52) (dual of [2596, 2429, 53]-code), using
- 2428 step Varšamov–Edel lengthening with (ri) = (8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0, 1, 36 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 44 times 0, 1, 45 times 0, 1, 47 times 0, 1, 49 times 0, 1, 52 times 0, 1, 54 times 0, 1, 56 times 0, 1, 58 times 0, 1, 61 times 0, 1, 64 times 0, 1, 66 times 0, 1, 69 times 0, 1, 72 times 0, 1, 75 times 0, 1, 79 times 0, 1, 82 times 0, 1, 85 times 0, 1, 89 times 0, 1, 92 times 0, 1, 97 times 0, 1, 101 times 0) [i] based on linear OA(852, 53, F8, 52) (dual of [53, 1, 53]-code or 53-arc in PG(51,8)), using
- dual of repetition code with length 53 [i]
- 2428 step Varšamov–Edel lengthening with (ri) = (8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0, 1, 36 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 44 times 0, 1, 45 times 0, 1, 47 times 0, 1, 49 times 0, 1, 52 times 0, 1, 54 times 0, 1, 56 times 0, 1, 58 times 0, 1, 61 times 0, 1, 64 times 0, 1, 66 times 0, 1, 69 times 0, 1, 72 times 0, 1, 75 times 0, 1, 79 times 0, 1, 82 times 0, 1, 85 times 0, 1, 89 times 0, 1, 92 times 0, 1, 97 times 0, 1, 101 times 0) [i] based on linear OA(852, 53, F8, 52) (dual of [53, 1, 53]-code or 53-arc in PG(51,8)), using
(167−52, 167, 952366)-Net in Base 8 — Upper bound on s
There is no (115, 167, 952367)-net in base 8, because
- the generalized Rao bound for nets shows that 8m ≥ 6 546890 156244 085623 391847 172959 621237 561729 078603 277122 434821 485098 374547 005997 901123 106874 192534 364269 793260 697145 341659 959283 505503 529037 928993 834570 > 8167 [i]