Best Known (109, 109+53, s)-Nets in Base 8
(109, 109+53, 1026)-Net over F8 — Constructive and digital
Digital (109, 162, 1026)-net over F8, using
- trace code for nets [i] based on digital (28, 81, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
(109, 109+53, 1907)-Net over F8 — Digital
Digital (109, 162, 1907)-net over F8, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(8162, 1907, F8, 53) (dual of [1907, 1745, 54]-code), using
- 1744 step Varšamov–Edel lengthening with (ri) = (9, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 28 times 0, 1, 28 times 0, 1, 30 times 0, 1, 31 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 38 times 0, 1, 40 times 0, 1, 42 times 0, 1, 44 times 0, 1, 45 times 0, 1, 48 times 0, 1, 49 times 0, 1, 52 times 0, 1, 53 times 0, 1, 56 times 0, 1, 59 times 0, 1, 61 times 0, 1, 63 times 0, 1, 66 times 0, 1, 69 times 0, 1, 72 times 0) [i] based on linear OA(853, 54, F8, 53) (dual of [54, 1, 54]-code or 54-arc in PG(52,8)), using
- dual of repetition code with length 54 [i]
- 1744 step Varšamov–Edel lengthening with (ri) = (9, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 28 times 0, 1, 28 times 0, 1, 30 times 0, 1, 31 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 38 times 0, 1, 40 times 0, 1, 42 times 0, 1, 44 times 0, 1, 45 times 0, 1, 48 times 0, 1, 49 times 0, 1, 52 times 0, 1, 53 times 0, 1, 56 times 0, 1, 59 times 0, 1, 61 times 0, 1, 63 times 0, 1, 66 times 0, 1, 69 times 0, 1, 72 times 0) [i] based on linear OA(853, 54, F8, 53) (dual of [54, 1, 54]-code or 54-arc in PG(52,8)), using
(109, 109+53, 589378)-Net in Base 8 — Upper bound on s
There is no (109, 162, 589379)-net in base 8, because
- 1 times m-reduction [i] would yield (109, 161, 589379)-net in base 8, but
- the generalized Rao bound for nets shows that 8m ≥ 24 974784 283917 497448 976499 263919 828172 488909 521695 945448 831226 705700 055790 127962 730191 368312 525025 581082 013926 828938 638026 231406 727579 020794 231272 > 8161 [i]