Best Known (171−58, 171, s)-Nets in Base 8
(171−58, 171, 513)-Net over F8 — Constructive and digital
Digital (113, 171, 513)-net over F8, using
- base reduction for projective spaces (embedding PG(85,64) in PG(170,8)) for nets [i] based on digital (28, 86, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
(171−58, 171, 576)-Net in Base 8 — Constructive
(113, 171, 576)-net in base 8, using
- t-expansion [i] based on (108, 171, 576)-net in base 8, using
- 1 times m-reduction [i] based on (108, 172, 576)-net in base 8, using
- trace code for nets [i] based on (22, 86, 288)-net in base 64, using
- 5 times m-reduction [i] based on (22, 91, 288)-net in base 64, using
- base change [i] based on digital (9, 78, 288)-net over F128, using
- net from sequence [i] based on digital (9, 287)-sequence over F128, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F128 with g(F) = 9 and N(F) ≥ 288, using
- net from sequence [i] based on digital (9, 287)-sequence over F128, using
- base change [i] based on digital (9, 78, 288)-net over F128, using
- 5 times m-reduction [i] based on (22, 91, 288)-net in base 64, using
- trace code for nets [i] based on (22, 86, 288)-net in base 64, using
- 1 times m-reduction [i] based on (108, 172, 576)-net in base 8, using
(171−58, 171, 1644)-Net over F8 — Digital
Digital (113, 171, 1644)-net over F8, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(8171, 1644, F8, 58) (dual of [1644, 1473, 59]-code), using
- 1472 step Varšamov–Edel lengthening with (ri) = (9, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 8 times 0, 1, 10 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 38 times 0, 1, 40 times 0, 1, 41 times 0, 1, 43 times 0, 1, 44 times 0, 1, 46 times 0, 1, 48 times 0, 1, 50 times 0, 1, 52 times 0, 1, 54 times 0, 1, 56 times 0) [i] based on linear OA(858, 59, F8, 58) (dual of [59, 1, 59]-code or 59-arc in PG(57,8)), using
- dual of repetition code with length 59 [i]
- 1472 step Varšamov–Edel lengthening with (ri) = (9, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 8 times 0, 1, 10 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 38 times 0, 1, 40 times 0, 1, 41 times 0, 1, 43 times 0, 1, 44 times 0, 1, 46 times 0, 1, 48 times 0, 1, 50 times 0, 1, 52 times 0, 1, 54 times 0, 1, 56 times 0) [i] based on linear OA(858, 59, F8, 58) (dual of [59, 1, 59]-code or 59-arc in PG(57,8)), using
(171−58, 171, 352466)-Net in Base 8 — Upper bound on s
There is no (113, 171, 352467)-net in base 8, because
- the generalized Rao bound for nets shows that 8m ≥ 26815 629933 176747 052210 659759 398942 051895 868950 067714 988242 766616 247635 531282 969335 205845 861976 912115 136267 384803 453570 632191 077352 297513 494047 529387 896928 > 8171 [i]