Best Known (113, 163, s)-Nets in Base 8
(113, 163, 1026)-Net over F8 — Constructive and digital
Digital (113, 163, 1026)-net over F8, using
- 7 times m-reduction [i] based on digital (113, 170, 1026)-net over F8, using
- trace code for nets [i] based on digital (28, 85, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- trace code for nets [i] based on digital (28, 85, 513)-net over F64, using
(113, 163, 2781)-Net over F8 — Digital
Digital (113, 163, 2781)-net over F8, using
(113, 163, 1123746)-Net in Base 8 — Upper bound on s
There is no (113, 163, 1123747)-net in base 8, because
- the generalized Rao bound for nets shows that 8m ≥ 1598 340854 454100 026514 356272 525343 607193 147856 646827 116286 992341 564570 773383 078089 826641 951849 685186 725088 161657 141801 798099 023628 754193 875031 005576 > 8163 [i]