Best Known (55, 55+14, s)-Nets in Base 81
(55, 55+14, 1205013)-Net over F81 — Constructive and digital
Digital (55, 69, 1205013)-net over F81, using
- (u, u+v)-construction [i] based on
- digital (9, 16, 6642)-net over F81, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 82)-net over F81, using
- s-reduction based on digital (0, 0, s)-net over F81 with arbitrarily large s, using
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 1, 82)-net over F81, using
- s-reduction based on digital (0, 1, s)-net over F81 with arbitrarily large s, using
- digital (0, 1, 82)-net over F81 (see above)
- digital (0, 1, 82)-net over F81 (see above)
- digital (0, 1, 82)-net over F81 (see above)
- digital (0, 2, 82)-net over F81, using
- digital (0, 3, 82)-net over F81, using
- net from sequence [i] based on digital (0, 81)-sequence over F81, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 0 and N(F) ≥ 82, using
- the rational function field F81(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 81)-sequence over F81, using
- digital (0, 7, 82)-net over F81, using
- net from sequence [i] based on digital (0, 81)-sequence over F81 (see above)
- digital (0, 0, 82)-net over F81, using
- generalized (u, u+v)-construction [i] based on
- digital (39, 53, 1198371)-net over F81, using
- net defined by OOA [i] based on linear OOA(8153, 1198371, F81, 14, 14) (dual of [(1198371, 14), 16777141, 15]-NRT-code), using
- OA 7-folding and stacking [i] based on linear OA(8153, 8388597, F81, 14) (dual of [8388597, 8388544, 15]-code), using
- discarding factors / shortening the dual code based on linear OA(8153, large, F81, 14) (dual of [large, large−53, 15]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 21523360 | 814−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
- discarding factors / shortening the dual code based on linear OA(8153, large, F81, 14) (dual of [large, large−53, 15]-code), using
- OA 7-folding and stacking [i] based on linear OA(8153, 8388597, F81, 14) (dual of [8388597, 8388544, 15]-code), using
- net defined by OOA [i] based on linear OOA(8153, 1198371, F81, 14, 14) (dual of [(1198371, 14), 16777141, 15]-NRT-code), using
- digital (9, 16, 6642)-net over F81, using
(55, 55+14, large)-Net over F81 — Digital
Digital (55, 69, large)-net over F81, using
- t-expansion [i] based on digital (54, 69, large)-net over F81, using
- 4 times m-reduction [i] based on digital (54, 73, large)-net over F81, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(8173, large, F81, 19) (dual of [large, large−73, 20]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 21523361 | 818−1, defining interval I = [0,9], and minimum distance d ≥ |{−9,−8,…,9}|+1 = 20 (BCH-bound) [i]
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(8173, large, F81, 19) (dual of [large, large−73, 20]-code), using
- 4 times m-reduction [i] based on digital (54, 73, large)-net over F81, using
(55, 55+14, large)-Net in Base 81 — Upper bound on s
There is no (55, 69, large)-net in base 81, because
- 12 times m-reduction [i] would yield (55, 57, large)-net in base 81, but