Best Known (9, 9+7, s)-Nets in Base 81
(9, 9+7, 6642)-Net over F81 — Constructive and digital
Digital (9, 16, 6642)-net over F81, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 82)-net over F81, using
- s-reduction based on digital (0, 0, s)-net over F81 with arbitrarily large s, using
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 0, 82)-net over F81 (see above)
- digital (0, 1, 82)-net over F81, using
- s-reduction based on digital (0, 1, s)-net over F81 with arbitrarily large s, using
- digital (0, 1, 82)-net over F81 (see above)
- digital (0, 1, 82)-net over F81 (see above)
- digital (0, 1, 82)-net over F81 (see above)
- digital (0, 2, 82)-net over F81, using
- digital (0, 3, 82)-net over F81, using
- net from sequence [i] based on digital (0, 81)-sequence over F81, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 0 and N(F) ≥ 82, using
- the rational function field F81(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 81)-sequence over F81, using
- digital (0, 7, 82)-net over F81, using
- net from sequence [i] based on digital (0, 81)-sequence over F81 (see above)
- digital (0, 0, 82)-net over F81, using
(9, 9+7, 6645)-Net over F81 — Digital
Digital (9, 16, 6645)-net over F81, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(8116, 6645, F81, 7) (dual of [6645, 6629, 8]-code), using
- (u, u+v)-construction [i] based on
- linear OA(813, 82, F81, 3) (dual of [82, 79, 4]-code or 82-arc in PG(2,81) or 82-cap in PG(2,81)), using
- extended Reed–Solomon code RSe(79,81) [i]
- oval in PG(2, 81) [i]
- linear OA(8113, 6563, F81, 7) (dual of [6563, 6550, 8]-code), using
- construction X applied to Ce(6) ⊂ Ce(5) [i] based on
- linear OA(8113, 6561, F81, 7) (dual of [6561, 6548, 8]-code), using an extension Ce(6) of the primitive narrow-sense BCH-code C(I) with length 6560 = 812−1, defining interval I = [1,6], and designed minimum distance d ≥ |I|+1 = 7 [i]
- linear OA(8111, 6561, F81, 6) (dual of [6561, 6550, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 6560 = 812−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(810, s, F81, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(6) ⊂ Ce(5) [i] based on
- linear OA(813, 82, F81, 3) (dual of [82, 79, 4]-code or 82-arc in PG(2,81) or 82-cap in PG(2,81)), using
- (u, u+v)-construction [i] based on
(9, 9+7, large)-Net in Base 81 — Upper bound on s
There is no (9, 16, large)-net in base 81, because
- 5 times m-reduction [i] would yield (9, 11, large)-net in base 81, but