Best Known (28, 33, s)-Nets in Base 81
(28, 33, large)-Net over F81 — Constructive and digital
Digital (28, 33, large)-net over F81, using
- t-expansion [i] based on digital (26, 33, large)-net over F81, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 177147)-net over F81, using
- s-reduction based on digital (0, 0, s)-net over F81 with arbitrarily large s, using
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 1, 177147)-net over F81, using
- s-reduction based on digital (0, 1, s)-net over F81 with arbitrarily large s, using
- digital (0, 1, 177147)-net over F81 (see above)
- digital (0, 1, 177147)-net over F81 (see above)
- digital (0, 1, 177147)-net over F81 (see above)
- digital (2, 4, 177147)-net over F81, using
- s-reduction based on digital (2, 4, 538084)-net over F81, using
- digital (3, 6, 177147)-net over F81, using
- s-reduction based on digital (3, 6, 538248)-net over F81, using
- net defined by OOA [i] based on linear OOA(816, 538248, F81, 3, 3) (dual of [(538248, 3), 1614738, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(816, 538248, F81, 2, 3) (dual of [(538248, 2), 1076490, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(816, 538248, F81, 3, 3) (dual of [(538248, 3), 1614738, 4]-NRT-code), using
- s-reduction based on digital (3, 6, 538248)-net over F81, using
- digital (12, 19, 177147)-net over F81, using
- net defined by OOA [i] based on linear OOA(8119, 177147, F81, 7, 7) (dual of [(177147, 7), 1240010, 8]-NRT-code), using
- OOA 3-folding and stacking with additional row [i] based on linear OA(8119, 531442, F81, 7) (dual of [531442, 531423, 8]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 531442 | 816−1, defining interval I = [0,3], and minimum distance d ≥ |{−3,−2,…,3}|+1 = 8 (BCH-bound) [i]
- OOA 3-folding and stacking with additional row [i] based on linear OA(8119, 531442, F81, 7) (dual of [531442, 531423, 8]-code), using
- net defined by OOA [i] based on linear OOA(8119, 177147, F81, 7, 7) (dual of [(177147, 7), 1240010, 8]-NRT-code), using
- digital (0, 0, 177147)-net over F81, using
- generalized (u, u+v)-construction [i] based on
(28, 33, large)-Net in Base 81 — Upper bound on s
There is no (28, 33, large)-net in base 81, because
- 3 times m-reduction [i] would yield (28, 30, large)-net in base 81, but