Best Known (34, s)-Sequences in Base 81
(34, 369)-Sequence over F81 — Constructive and digital
Digital (34, 369)-sequence over F81, using
- t-expansion [i] based on digital (16, 369)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 16 and N(F) ≥ 370, using
(34, 593)-Sequence over F81 — Digital
Digital (34, 593)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 34 and N(F) ≥ 594, using
(34, 2869)-Sequence in Base 81 — Upper bound on s
There is no (34, 2870)-sequence in base 81, because
- net from sequence [i] would yield (34, m, 2871)-net in base 81 for arbitrarily large m, but
- m-reduction [i] would yield (34, 2869, 2871)-net in base 81, but
- extracting embedded OOA [i] would yield OA(812869, 2871, S81, 2835), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 2 024168 635427 057414 967549 964769 171657 258992 686103 585967 670598 615063 082040 068849 623983 535456 462581 714724 497357 260050 419313 323328 810782 175385 104370 178064 593759 786881 163305 509548 332676 007501 740368 610574 109512 016280 724725 442949 356660 850072 699407 390198 865621 752643 827227 743379 207771 809409 657722 547500 530143 903068 524694 862158 870558 895153 312010 187325 513760 604649 996606 808325 911537 492299 328929 798417 463111 341691 432637 260117 419931 401188 258727 547275 681580 696481 513699 630778 865448 228152 508267 686675 527955 641664 199040 712357 411958 328270 250397 627143 524126 167897 669225 312325 209481 749840 963349 093303 919926 285649 946107 484993 115166 179263 805457 352745 242118 477878 277368 434119 965526 175930 058143 996093 097232 645717 152290 699945 443517 051420 869478 843620 622815 108834 073248 039379 661384 592043 726161 450086 617354 267782 300672 389440 508940 356320 376252 984130 725132 280391 025106 227976 393833 020201 932565 126921 916792 894441 188043 093303 058221 712245 219315 845262 671527 096359 193843 677921 677822 409141 885480 111313 942454 970611 249667 678121 115370 257931 843145 218115 898483 458289 609890 266943 618464 959222 643221 505995 971202 953132 827993 453763 168499 576276 194830 849411 388268 070327 579944 506155 794410 684339 392388 554312 809016 009962 637457 194279 865539 734131 786322 282334 830373 591028 308977 811638 881763 762793 671821 369994 521043 951311 340482 081581 763219 874094 906617 748127 727330 063681 490190 029626 870589 582851 183669 720470 765223 881062 979562 358918 939738 119104 065503 561065 639032 295509 446605 589956 564465 012852 304360 078214 642024 735114 319727 555408 375252 632057 897843 034054 135207 615328 168460 719486 710161 078695 166971 868500 536069 661041 686156 456987 754685 061956 292254 100425 058493 091023 478510 078176 753909 564241 848156 694858 989285 856964 083257 792866 771401 307931 273413 734250 925776 368479 849886 377085 130197 067080 593741 004322 194102 633276 941292 492803 378153 559047 658235 252818 740487 788290 104497 603174 839130 270211 673756 094778 542883 623447 092448 739241 220290 695679 301610 104979 353566 653800 158733 500869 627015 155233 404105 025738 060898 317474 557811 809382 098131 828077 957383 598941 660453 609651 706010 907051 443306 502206 978469 917796 141605 329335 850902 156420 868003 641291 215818 313575 645315 320210 990166 882500 681599 707728 714222 867104 740096 545241 055958 533003 327884 376894 063113 886420 297398 020825 702202 766694 262483 610436 569492 551628 185983 864860 295761 148449 377140 894665 414002 240801 497386 111670 113817 518804 496991 750911 253761 091479 762120 492319 898016 178546 080674 962347 009124 251807 613640 170475 382852 927935 307819 388607 539968 595033 345893 067960 633881 206846 596978 784562 222617 573618 190550 331483 658202 424821 808158 755181 308150 919205 023853 883161 572283 544623 353599 011458 948233 481192 258739 332053 369738 626563 794596 640959 329737 840257 270530 392366 396000 786582 915414 229631 537693 383691 301677 437179 631297 824442 702723 706700 734386 158372 020565 863982 832532 059926 481912 781637 272015 192121 748293 167170 274903 721751 010901 517297 231706 910702 503778 113835 567201 351768 533146 295916 451380 009019 468705 571330 407889 466042 385974 184844 698215 958557 316937 679599 576477 162241 052588 036547 866144 219723 151064 651863 168530 034845 076241 025187 980236 011992 276073 432366 492958 146291 014599 354058 276630 608044 422436 521445 577891 899543 675635 448481 598469 058609 293569 565879 853017 114019 998649 637062 779504 172676 106588 490370 897898 555869 545873 086588 389890 917381 738727 264404 704639 077182 541980 393963 434608 494671 019010 091574 621949 949077 692390 648550 689806 760205 863332 729184 448886 658759 424038 626837 691573 257395 100888 955465 352397 493790 228610 948907 616171 246103 067347 169899 523340 812241 487714 964810 677091 074168 715315 750730 740443 547562 400365 751511 146383 362245 484881 729825 536486 261915 265004 777549 088732 932690 214284 902593 661803 432479 822152 077867 587325 927658 477102 961759 377180 721028 006557 776800 942649 889691 387628 751988 478082 778922 394806 079309 829416 680142 958954 090130 572149 202108 509641 275970 098013 319957 312854 910246 640062 456932 401257 476380 059644 759375 266474 453944 149782 999502 111790 105490 146150 015814 582961 345769 159439 180003 877242 497872 015253 675196 720077 391696 992235 873128 922358 489114 560267 706358 289704 065862 922026 487763 999868 634705 978150 679728 712797 468294 849129 586559 548307 789109 266883 700145 315997 288476 699183 094714 440216 376091 620208 401794 449687 878360 221897 836946 107651 738831 376250 535707 895503 701157 007962 472849 334615 962586 500298 997563 243555 567787 706038 852932 102461 977495 195778 445060 038287 286405 138555 015564 134243 182013 925494 990880 123160 259424 524209 924165 940899 147877 314015 311376 070189 747112 584437 188395 473721 337299 854943 392877 803473 624413 937637 958713 636427 214646 611750 948932 265356 970963 689340 360538 666819 440510 299756 306226 292115 563685 246302 183148 720471 094001 690271 160255 185408 115072 657936 024083 377250 984321 922579 217619 423870 454515 387677 955699 539378 080207 989629 191004 116562 261455 064619 703124 076724 687176 915260 133171 905519 912712 694184 459563 429260 372436 976379 232835 540915 527325 779143 096602 805791 731947 603485 165074 080535 967599 965968 379637 016528 653608 781314 365884 311241 749585 594813 298193 686899 106530 384018 040416 631150 226832 008192 891456 111857 331132 657549 888210 570856 933934 176160 959430 048678 798229 239799 745043 337898 224070 712953 867888 235299 943742 999486 665533 008634 547432 455340 849611 871318 647918 511222 597824 259772 163368 884445 980733 686153 124836 744239 062256 900052 688866 901832 136290 910691 415993 480398 547225 344510 891585 851569 416302 930409 647940 384419 759541 695345 840545 559030 810411 143573 327106 723284 666529 452103 649311 015327 817255 991137 424207 321904 918317 874821 809286 681160 207739 791468 787642 490823 743778 131540 090486 295154 850044 754350 240642 719568 049394 574943 662585 596397 501497 227455 538242 460670 158359 275784 088877 684930 884022 216813 890874 486384 001165 682060 601424 475321 718243 547020 606038 539790 450409 / 709 > 812869 [i]
- extracting embedded OOA [i] would yield OA(812869, 2871, S81, 2835), but
- m-reduction [i] would yield (34, 2869, 2871)-net in base 81, but