Best Known (132−48, 132, s)-Nets in Base 9
(132−48, 132, 740)-Net over F9 — Constructive and digital
Digital (84, 132, 740)-net over F9, using
- 4 times m-reduction [i] based on digital (84, 136, 740)-net over F9, using
- trace code for nets [i] based on digital (16, 68, 370)-net over F81, using
- net from sequence [i] based on digital (16, 369)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 16 and N(F) ≥ 370, using
- net from sequence [i] based on digital (16, 369)-sequence over F81, using
- trace code for nets [i] based on digital (16, 68, 370)-net over F81, using
(132−48, 132, 1123)-Net over F9 — Digital
Digital (84, 132, 1123)-net over F9, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(9132, 1123, F9, 48) (dual of [1123, 991, 49]-code), using
- 990 step Varšamov–Edel lengthening with (ri) = (7, 3, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0, 1, 33 times 0, 1, 34 times 0, 1, 36 times 0, 1, 38 times 0, 1, 39 times 0, 1, 42 times 0, 1, 43 times 0, 1, 46 times 0, 1, 49 times 0) [i] based on linear OA(948, 49, F9, 48) (dual of [49, 1, 49]-code or 49-arc in PG(47,9)), using
- dual of repetition code with length 49 [i]
- 990 step Varšamov–Edel lengthening with (ri) = (7, 3, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0, 1, 33 times 0, 1, 34 times 0, 1, 36 times 0, 1, 38 times 0, 1, 39 times 0, 1, 42 times 0, 1, 43 times 0, 1, 46 times 0, 1, 49 times 0) [i] based on linear OA(948, 49, F9, 48) (dual of [49, 1, 49]-code or 49-arc in PG(47,9)), using
(132−48, 132, 217058)-Net in Base 9 — Upper bound on s
There is no (84, 132, 217059)-net in base 9, because
- the generalized Rao bound for nets shows that 9m ≥ 912047 405452 471386 576083 031827 341437 149576 817810 274491 366655 536740 875318 691141 753159 384905 946442 188749 858331 696722 382023 776321 > 9132 [i]