Best Known (106−89, 106, s)-Nets in Base 9
(106−89, 106, 74)-Net over F9 — Constructive and digital
Digital (17, 106, 74)-net over F9, using
- net from sequence [i] based on digital (17, 73)-sequence over F9, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F9 with g(F) = 17 and N(F) ≥ 74, using
(106−89, 106, 299)-Net in Base 9 — Upper bound on s
There is no (17, 106, 300)-net in base 9, because
- 5 times m-reduction [i] would yield (17, 101, 300)-net in base 9, but
- extracting embedded orthogonal array [i] would yield OA(9101, 300, S9, 84), but
- the linear programming bound shows that M ≥ 1 081998 669707 713617 008118 839294 498618 821381 818821 191631 819083 846833 140437 910265 005393 444184 161924 063086 216407 548641 525677 495826 651979 260620 122496 177412 740362 341175 579757 321258 116751 578963 540482 706106 154392 879092 133039 203814 443162 745573 656874 574966 467765 281228 145475 364040 247610 203586 272313 854193 414553 / 333490 034521 302951 507456 531016 579021 531798 114410 969477 904264 373430 475441 890592 220587 254122 250696 405667 929332 288616 723146 874441 254966 478154 141391 882461 295760 569172 601427 866250 799306 856867 123574 444844 101549 > 9101 [i]
- extracting embedded orthogonal array [i] would yield OA(9101, 300, S9, 84), but