Best Known (79, 127, s)-Nets in Base 9
(79, 127, 448)-Net over F9 — Constructive and digital
Digital (79, 127, 448)-net over F9, using
- 5 times m-reduction [i] based on digital (79, 132, 448)-net over F9, using
- trace code for nets [i] based on digital (13, 66, 224)-net over F81, using
- net from sequence [i] based on digital (13, 223)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 13 and N(F) ≥ 224, using
- net from sequence [i] based on digital (13, 223)-sequence over F81, using
- trace code for nets [i] based on digital (13, 66, 224)-net over F81, using
(79, 127, 894)-Net over F9 — Digital
Digital (79, 127, 894)-net over F9, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(9127, 894, F9, 48) (dual of [894, 767, 49]-code), using
- 766 step Varšamov–Edel lengthening with (ri) = (7, 3, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0, 1, 33 times 0, 1, 34 times 0, 1, 36 times 0, 1, 38 times 0) [i] based on linear OA(948, 49, F9, 48) (dual of [49, 1, 49]-code or 49-arc in PG(47,9)), using
- dual of repetition code with length 49 [i]
- 766 step Varšamov–Edel lengthening with (ri) = (7, 3, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0, 1, 33 times 0, 1, 34 times 0, 1, 36 times 0, 1, 38 times 0) [i] based on linear OA(948, 49, F9, 48) (dual of [49, 1, 49]-code or 49-arc in PG(47,9)), using
(79, 127, 137328)-Net in Base 9 — Upper bound on s
There is no (79, 127, 137329)-net in base 9, because
- the generalized Rao bound for nets shows that 9m ≥ 15 447159 699928 893482 100792 901616 413787 531389 431861 263041 061163 125125 993392 926890 409984 318364 302441 887231 821594 071825 797569 > 9127 [i]