Information on Result #121292

There is no OOA(786, 45, S7, 2, 81), because the LP bound with quadratic polynomials shows that M ≥ 405 368844 447017 397144 485951 958074 725759 929366 921792 254455 742666 234993 920165 / 82 > 786

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OOA(788, 45, S7, 3, 83) [i]m-Reduction for OOAs
2No OOA(789, 45, S7, 3, 84) [i]
3No OOA(790, 45, S7, 3, 85) [i]
4No OOA(791, 45, S7, 3, 86) [i]
5No OOA(792, 45, S7, 3, 87) [i]
6No OOA(793, 45, S7, 3, 88) [i]
7No OOA(794, 45, S7, 3, 89) [i]
8No OOA(795, 45, S7, 3, 90) [i]
9No OOA(796, 45, S7, 3, 91) [i]
10No OOA(797, 45, S7, 3, 92) [i]
11No OOA(798, 45, S7, 3, 93) [i]
12No OOA(799, 45, S7, 3, 94) [i]
13No OOA(7100, 45, S7, 3, 95) [i]
14No OOA(7101, 45, S7, 3, 96) [i]
15No OOA(7102, 45, S7, 3, 97) [i]
16No OOA(7103, 45, S7, 3, 98) [i]
17No OOA(7104, 45, S7, 3, 99) [i]
18No OOA(7105, 45, S7, 3, 100) [i]
19No OOA(7106, 45, S7, 3, 101) [i]
20No OOA(7107, 45, S7, 3, 102) [i]
21No OOA(7108, 45, S7, 3, 103) [i]
22No OOA(7109, 45, S7, 3, 104) [i]
23No OOA(7110, 45, S7, 3, 105) [i]
24No OOA(786, 45, S7, 3, 81) [i]Depth Reduction
25No (5, 86, 45)-net in base 7 [i]Extracting Embedded OOA