Information on Result #1297312

Linear OA(2166, 298, F2, 44) (dual of [298, 132, 45]-code), using construction X with VarÅ¡amov bound based on
  1. linear OA(2161, 292, F2, 44) (dual of [292, 131, 45]-code), using
    • construction XX applied to C1 = C([213,254]), C2 = C([219,2]), C3 = C1 + C2 = C([219,254]), and C∩ = C1 ∩ C2 = C([213,2]) [i] based on
      1. linear OA(2140, 255, F2, 42) (dual of [255, 115, 43]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−42,−41,…,−1}, and designed minimum distance d ≥ |I|+1 = 43 [i]
      2. linear OA(2133, 255, F2, 39) (dual of [255, 122, 40]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−36,−35,…,2}, and designed minimum distance d ≥ |I|+1 = 40 [i]
      3. linear OA(2149, 255, F2, 45) (dual of [255, 106, 46]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−42,−41,…,2}, and designed minimum distance d ≥ |I|+1 = 46 [i]
      4. linear OA(2124, 255, F2, 36) (dual of [255, 131, 37]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−36,−35,…,−1}, and designed minimum distance d ≥ |I|+1 = 37 [i]
      5. linear OA(211, 27, F2, 5) (dual of [27, 16, 6]-code), using
      6. linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
  2. linear OA(2161, 293, F2, 39) (dual of [293, 132, 40]-code), using Gilbert–VarÅ¡amov bound and bm = 2161 > Vbs−1(k−1) = 875505 189076 586178 542482 087534 910614 182952 910400 [i]
  3. linear OA(24, 5, F2, 4) (dual of [5, 1, 5]-code or 5-arc in PG(3,2)), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2167, 299, F2, 45) (dual of [299, 132, 46]-code) [i]Adding a Parity Check Bit