Information on Result #1749657
Digital (62, 83, 140)-net over F2, using embedding of OOA with Gilbert–Varšamov bound based on linear OOA(283, 140, F2, 2, 21) (dual of [(140, 2), 197, 22]-NRT-code), using
- OOA 2-folding [i] based on linear OA(283, 280, F2, 21) (dual of [280, 197, 22]-code), using
- construction XX applied to C1 = C([237,0]), C2 = C([241,2]), C3 = C1 + C2 = C([241,0]), and C∩ = C1 ∩ C2 = C([237,2]) [i] based on
- linear OA(269, 255, F2, 19) (dual of [255, 186, 20]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−18,−17,…,0}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(265, 255, F2, 17) (dual of [255, 190, 18]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−14,−13,…,2}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(277, 255, F2, 21) (dual of [255, 178, 22]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−18,−17,…,2}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(257, 255, F2, 15) (dual of [255, 198, 16]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−14,−13,…,0}, and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(25, 16, F2, 3) (dual of [16, 11, 4]-code or 16-cap in PG(4,2)), using
- linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction XX applied to C1 = C([237,0]), C2 = C([241,2]), C3 = C1 + C2 = C([241,0]), and C∩ = C1 ∩ C2 = C([237,2]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.