Information on Result #1849689
There is no (92, m, 102)-net in base 2 for arbitrarily large m, because m-reduction would yield (92, 705, 102)-net in base 2, but
- extracting embedded OOA [i] would yield OOA(2705, 102, S2, 7, 613), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 51843 899445 660769 287367 196285 666548 127664 149096 625201 559215 056580 645424 112752 028582 752297 381551 911775 293144 141046 492513 779519 524257 811570 874987 742379 544937 657158 684502 641949 959777 037997 707884 701425 866289 107861 241856 / 307 > 2705 [i]
Mode: Bound.
Optimality
Show details for fixed m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (92, 101)-sequence in base 2 | [i] | Net from Sequence | |
2 | No (92, 92+k, 102)-net in base 2 for arbitrarily large k | [i] | Logical Equivalence (for Nets with Unbounded m) | |
3 | No (92, m, 102)-net in base 2 with unbounded m | [i] | ||
4 | No digital (92, 92+k, 102)-net over F2 for arbitrarily large k | [i] | ||
5 | No digital (92, m, 102)-net over F2 with unbounded m | [i] |