Information on Result #2174912
Linear OA(280, 271, F2, 21) (dual of [271, 191, 22]-code), using adding a parity check bit based on linear OA(279, 270, F2, 20) (dual of [270, 191, 21]-code), using
- construction XX applied to C1 = C([253,16]), C2 = C([1,18]), C3 = C1 + C2 = C([1,16]), and C∩ = C1 ∩ C2 = C([253,18]) [i] based on
- linear OA(273, 255, F2, 19) (dual of [255, 182, 20]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,16}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(268, 255, F2, 18) (dual of [255, 187, 19]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(277, 255, F2, 21) (dual of [255, 178, 22]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,18}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(264, 255, F2, 16) (dual of [255, 191, 17]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(21, 5, F2, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(280, 271, F2, 20) (dual of [271, 191, 21]-code) | [i] | Strength Reduction | |
2 | Linear OA(281, 272, F2, 21) (dual of [272, 191, 22]-code) | [i] | Code Embedding in Larger Space | |
3 | Linear OOA(280, 135, F2, 2, 21) (dual of [(135, 2), 190, 22]-NRT-code) | [i] | OOA Folding | |
4 | Linear OOA(280, 90, F2, 3, 21) (dual of [(90, 3), 190, 22]-NRT-code) | [i] | ||
5 | Linear OOA(280, 54, F2, 5, 21) (dual of [(54, 5), 190, 22]-NRT-code) | [i] | ||
6 | Linear OOA(280, 45, F2, 6, 21) (dual of [(45, 6), 190, 22]-NRT-code) | [i] |