Information on Result #334296
There is no OOA(2240, 50, S2, 5, 200), because the LP bound with quadratic polynomials shows that M ≥ 669 635037 551007 660912 069752 781566 117498 616396 915859 585128 088750 289902 895104 / 335 > 2240
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OOA(2245, 50, S2, 6, 205) | [i] | m-Reduction for OOAs | |
2 | No OOA(2246, 50, S2, 6, 206) | [i] | ||
3 | No OOA(2247, 50, S2, 6, 207) | [i] | ||
4 | No OOA(2248, 50, S2, 6, 208) | [i] | ||
5 | No OOA(2249, 50, S2, 6, 209) | [i] | ||
6 | No OOA(2250, 50, S2, 6, 210) | [i] | ||
7 | No OOA(2251, 50, S2, 6, 211) | [i] | ||
8 | No OOA(2252, 50, S2, 6, 212) | [i] | ||
9 | No OOA(2253, 50, S2, 6, 213) | [i] | ||
10 | No OOA(2254, 50, S2, 6, 214) | [i] | ||
11 | No OOA(2255, 50, S2, 6, 215) | [i] | ||
12 | No OOA(2256, 50, S2, 6, 216) | [i] | ||
13 | No OOA(2257, 50, S2, 6, 217) | [i] | ||
14 | No OOA(2258, 50, S2, 6, 218) | [i] | ||
15 | No OOA(2259, 50, S2, 6, 219) | [i] | ||
16 | No OOA(2260, 50, S2, 6, 220) | [i] | ||
17 | No OOA(2240, 50, S2, 6, 200) | [i] | Depth Reduction | |
18 | No OOA(2240, 50, S2, 7, 200) | [i] | ||
19 | No OOA(2240, 50, S2, 8, 200) | [i] | ||
20 | No (40, 240, 50)-net in base 2 | [i] | Extracting Embedded OOA |