Information on Result #517271
There is no (0, 2, 66)-net in base 64, because the generalized Rao bound for nets shows that 64m ≥ 4159 > 642
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (0, 3, 66)-net in base 64 | [i] | m-Reduction | |
2 | No (0, 4, 66)-net in base 64 | [i] | ||
3 | No (0, 5, 66)-net in base 64 | [i] | ||
4 | No (0, 6, 66)-net in base 64 | [i] | ||
5 | No (0, 7, 66)-net in base 64 | [i] | ||
6 | No (0, 8, 66)-net in base 64 | [i] | ||
7 | No (0, 9, 66)-net in base 64 | [i] | ||
8 | No (0, 10, 66)-net in base 64 | [i] | ||
9 | No (0, 11, 66)-net in base 64 | [i] | ||
10 | No (0, 12, 66)-net in base 64 | [i] | ||
11 | No (0, 13, 66)-net in base 64 | [i] | ||
12 | No (0, 14, 66)-net in base 64 | [i] | ||
13 | No (0, 15, 66)-net in base 64 | [i] | ||
14 | No (0, 16, 66)-net in base 64 | [i] | ||
15 | No (0, 17, 66)-net in base 64 | [i] | ||
16 | No (0, 18, 66)-net in base 64 | [i] | ||
17 | No (0, 19, 66)-net in base 64 | [i] | ||
18 | No (0, 20, 66)-net in base 64 | [i] | ||
19 | No (0, 21, 66)-net in base 64 | [i] | ||
20 | No (0, 22, 66)-net in base 64 | [i] | ||
21 | No (0, 23, 66)-net in base 64 | [i] | ||
22 | No (0, 24, 66)-net in base 64 | [i] | ||
23 | No (0, 25, 66)-net in base 64 | [i] | ||
24 | No (0, 26, 66)-net in base 64 | [i] | ||
25 | No (0, 27, 66)-net in base 64 | [i] | ||
26 | No (0, 28, 66)-net in base 64 | [i] | ||
27 | No (0, 29, 66)-net in base 64 | [i] | ||
28 | No (0, 30, 66)-net in base 64 | [i] | ||
29 | No (0, 31, 66)-net in base 64 | [i] | ||
30 | No (0, 32, 66)-net in base 64 | [i] | ||
31 | No (0, 33, 66)-net in base 64 | [i] | ||
32 | No (0, 34, 66)-net in base 64 | [i] | ||
33 | No (0, 35, 66)-net in base 64 | [i] | ||
34 | No (0, 36, 66)-net in base 64 | [i] | ||
35 | No (0, 37, 66)-net in base 64 | [i] | ||
36 | No (0, 38, 66)-net in base 64 | [i] | ||
37 | No (0, 39, 66)-net in base 64 | [i] | ||
38 | No (0, 40, 66)-net in base 64 | [i] | ||
39 | No (0, 41, 66)-net in base 64 | [i] | ||
40 | No (0, 42, 66)-net in base 64 | [i] | ||
41 | No (0, 43, 66)-net in base 64 | [i] | ||
42 | No (0, 44, 66)-net in base 64 | [i] | ||
43 | No (0, 45, 66)-net in base 64 | [i] | ||
44 | No (0, 46, 66)-net in base 64 | [i] | ||
45 | No (0, 47, 66)-net in base 64 | [i] | ||
46 | No (0, 48, 66)-net in base 64 | [i] | ||
47 | No (0, 49, 66)-net in base 64 | [i] | ||
48 | No (0, 50, 66)-net in base 64 | [i] | ||
49 | No (0, 51, 66)-net in base 64 | [i] | ||
50 | No (0, 52, 66)-net in base 64 | [i] | ||
51 | No (0, 53, 66)-net in base 64 | [i] | ||
52 | No (0, 54, 66)-net in base 64 | [i] | ||
53 | No (0, 55, 66)-net in base 64 | [i] | ||
54 | No (0, 56, 66)-net in base 64 | [i] | ||
55 | No (0, 57, 66)-net in base 64 | [i] | ||
56 | No (0, 58, 66)-net in base 64 | [i] | ||
57 | No (0, 59, 66)-net in base 64 | [i] | ||
58 | No (0, 60, 66)-net in base 64 | [i] | ||
59 | No (0, 61, 66)-net in base 64 | [i] | ||
60 | No (0, 62, 66)-net in base 64 | [i] | ||
61 | No (0, 63, 66)-net in base 64 | [i] | ||
62 | No (0, 64, 66)-net in base 64 | [i] | ||
63 | No (0, 65, 66)-net in base 64 | [i] | ||
64 | No (0, 66, 66)-net in base 64 | [i] | ||
65 | No (0, 67, 66)-net in base 64 | [i] | ||
66 | No (0, 68, 66)-net in base 64 | [i] | ||
67 | No (0, 69, 66)-net in base 64 | [i] | ||
68 | No (0, 70, 66)-net in base 64 | [i] | ||
69 | No (0, 71, 66)-net in base 64 | [i] | ||
70 | No (0, 72, 66)-net in base 64 | [i] | ||
71 | No (0, 73, 66)-net in base 64 | [i] | ||
72 | No (0, 74, 66)-net in base 64 | [i] | ||
73 | No (0, 75, 66)-net in base 64 | [i] | ||
74 | No (0, 76, 66)-net in base 64 | [i] | ||
75 | No (0, 77, 66)-net in base 64 | [i] | ||
76 | No (0, 78, 66)-net in base 64 | [i] | ||
77 | No (0, 79, 66)-net in base 64 | [i] | ||
78 | No (0, 80, 66)-net in base 64 | [i] | ||
79 | No (0, 81, 66)-net in base 64 | [i] | ||
80 | No (0, 82, 66)-net in base 64 | [i] | ||
81 | No (0, 83, 66)-net in base 64 | [i] | ||
82 | No (0, 84, 66)-net in base 64 | [i] | ||
83 | No (0, 85, 66)-net in base 64 | [i] | ||
84 | No (0, 86, 66)-net in base 64 | [i] | ||
85 | No (0, 87, 66)-net in base 64 | [i] | ||
86 | No (0, 88, 66)-net in base 64 | [i] | ||
87 | No (0, 89, 66)-net in base 64 | [i] | ||
88 | No (0, 90, 66)-net in base 64 | [i] | ||
89 | No (0, 91, 66)-net in base 64 | [i] | ||
90 | No (0, m, 66)-net in base 64 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |