Information on Result #522453
There is no (9, 95, 49)-net in base 5, because extracting embedded OOA would yield OOA(595, 49, S5, 2, 86), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 239 813715 187187 588845 165483 845967 013820 654756 273142 993450 164794 921875 / 87 > 595 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (9, 96, 49)-net in base 5 | [i] | m-Reduction | |
2 | No (9, 97, 49)-net in base 5 | [i] | ||
3 | No (9, 98, 49)-net in base 5 | [i] | ||
4 | No (9, 99, 49)-net in base 5 | [i] | ||
5 | No (9, 100, 49)-net in base 5 | [i] | ||
6 | No (9, 101, 49)-net in base 5 | [i] | ||
7 | No (9, 102, 49)-net in base 5 | [i] | ||
8 | No (9, 103, 49)-net in base 5 | [i] | ||
9 | No (9, 104, 49)-net in base 5 | [i] | ||
10 | No (9, 105, 49)-net in base 5 | [i] | ||
11 | No (9, 106, 49)-net in base 5 | [i] | ||
12 | No (9, 107, 49)-net in base 5 | [i] | ||
13 | No (9, 108, 49)-net in base 5 | [i] | ||
14 | No (9, 109, 49)-net in base 5 | [i] | ||
15 | No (9, 110, 49)-net in base 5 | [i] | ||
16 | No (9, 111, 49)-net in base 5 | [i] | ||
17 | No (9, 112, 49)-net in base 5 | [i] | ||
18 | No (9, 113, 49)-net in base 5 | [i] | ||
19 | No (9, 114, 49)-net in base 5 | [i] | ||
20 | No (9, 115, 49)-net in base 5 | [i] | ||
21 | No (9, 116, 49)-net in base 5 | [i] | ||
22 | No (9, 117, 49)-net in base 5 | [i] | ||
23 | No (9, 118, 49)-net in base 5 | [i] | ||
24 | No (9, 119, 49)-net in base 5 | [i] | ||
25 | No (9, 120, 49)-net in base 5 | [i] | ||
26 | No (9, 121, 49)-net in base 5 | [i] | ||
27 | No (9, 122, 49)-net in base 5 | [i] | ||
28 | No (9, 123, 49)-net in base 5 | [i] | ||
29 | No (9, 124, 49)-net in base 5 | [i] | ||
30 | No (9, 125, 49)-net in base 5 | [i] | ||
31 | No (9, 126, 49)-net in base 5 | [i] | ||
32 | No (9, 127, 49)-net in base 5 | [i] | ||
33 | No (9, 128, 49)-net in base 5 | [i] | ||
34 | No (9, 129, 49)-net in base 5 | [i] | ||
35 | No (9, 130, 49)-net in base 5 | [i] | ||
36 | No (9, 131, 49)-net in base 5 | [i] | ||
37 | No (9, 132, 49)-net in base 5 | [i] | ||
38 | No (9, 133, 49)-net in base 5 | [i] | ||
39 | No (9, 134, 49)-net in base 5 | [i] | ||
40 | No (9, 135, 49)-net in base 5 | [i] | ||
41 | No (9, 136, 49)-net in base 5 | [i] | ||
42 | No (9, 137, 49)-net in base 5 | [i] | ||
43 | No (9, 138, 49)-net in base 5 | [i] | ||
44 | No (9, 139, 49)-net in base 5 | [i] | ||
45 | No (9, 140, 49)-net in base 5 | [i] | ||
46 | No (9, 141, 49)-net in base 5 | [i] | ||
47 | No (9, 142, 49)-net in base 5 | [i] | ||
48 | No (9, 143, 49)-net in base 5 | [i] | ||
49 | No (9, 144, 49)-net in base 5 | [i] | ||
50 | No (9, 145, 49)-net in base 5 | [i] | ||
51 | No (9, 146, 49)-net in base 5 | [i] | ||
52 | No (9, 147, 49)-net in base 5 | [i] | ||
53 | No (9, 148, 49)-net in base 5 | [i] | ||
54 | No (9, 149, 49)-net in base 5 | [i] | ||
55 | No (9, 150, 49)-net in base 5 | [i] | ||
56 | No (9, m, 49)-net in base 5 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |