Information on Result #546441
There is no linear OA(2203, 240, F2, 98) (dual of [240, 37, 99]-code), because residual code would yield OA(2105, 141, S2, 49), but
- 1 times truncation [i] would yield OA(2104, 140, S2, 48), but
- the linear programming bound shows that M ≥ 906615 640616 170781 657520 759485 197602 258944 / 38102 739675 > 2104 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2204, 241, F2, 99) (dual of [241, 37, 100]-code) | [i] | Truncation | |
2 | No linear OOA(2204, 240, F2, 2, 99) (dual of [(240, 2), 276, 100]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2203, 240, F2, 2, 98) (dual of [(240, 2), 277, 99]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2203, 240, F2, 3, 98) (dual of [(240, 3), 517, 99]-NRT-code) | [i] | ||
5 | No linear OOA(2203, 240, F2, 4, 98) (dual of [(240, 4), 757, 99]-NRT-code) | [i] | ||
6 | No linear OOA(2203, 240, F2, 5, 98) (dual of [(240, 5), 997, 99]-NRT-code) | [i] | ||
7 | No linear OOA(2203, 240, F2, 6, 98) (dual of [(240, 6), 1237, 99]-NRT-code) | [i] | ||
8 | No linear OOA(2203, 240, F2, 7, 98) (dual of [(240, 7), 1477, 99]-NRT-code) | [i] | ||
9 | No linear OOA(2203, 240, F2, 8, 98) (dual of [(240, 8), 1717, 99]-NRT-code) | [i] | ||
10 | No digital (105, 203, 240)-net over F2 | [i] | Extracting Embedded Orthogonal Array |