Information on Result #547784

There is no linear OA(3135, 204, F3, 86) (dual of [204, 69, 87]-code), because construction Y1 would yield
  1. linear OA(3134, 166, F3, 86) (dual of [166, 32, 87]-code), but
  2. OA(369, 204, S3, 38), but
    • the linear programming bound shows that M ≥ 6 710037 728131 003348 552980 099207 116544 142102 525372 997131 892145 770552 010000 / 7482 803495 454819 242924 378875 207345 317893 > 369 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3135, 204, F3, 2, 86) (dual of [(204, 2), 273, 87]-NRT-code) [i]Depth Reduction
2No linear OOA(3135, 204, F3, 3, 86) (dual of [(204, 3), 477, 87]-NRT-code) [i]
3No linear OOA(3135, 204, F3, 4, 86) (dual of [(204, 4), 681, 87]-NRT-code) [i]
4No linear OOA(3135, 204, F3, 5, 86) (dual of [(204, 5), 885, 87]-NRT-code) [i]
5No digital (49, 135, 204)-net over F3 [i]Extracting Embedded Orthogonal Array