Information on Result #677794

Linear OA(335, 93, F3, 12) (dual of [93, 58, 13]-code), using construction XX applied to Ce(12) ⊂ Ce(9) ⊂ Ce(7) based on
  1. linear OA(331, 81, F3, 13) (dual of [81, 50, 14]-code), using an extension Ce(12) of the primitive narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
  2. linear OA(325, 81, F3, 10) (dual of [81, 56, 11]-code), using an extension Ce(9) of the primitive narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [1,9], and designed minimum distance d ≥ |I|+1 = 10 [i]
  3. linear OA(321, 81, F3, 8) (dual of [81, 60, 9]-code), using an extension Ce(7) of the primitive narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [1,7], and designed minimum distance d ≥ |I|+1 = 8 [i]
  4. linear OA(31, 9, F3, 1) (dual of [9, 8, 2]-code), using
  5. linear OA(31, 3, F3, 1) (dual of [3, 2, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(335, 88, F3, 2, 12) (dual of [(88, 2), 141, 13]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(335, 88, F3, 3, 12) (dual of [(88, 3), 229, 13]-NRT-code) [i]
3Linear OOA(335, 88, F3, 4, 12) (dual of [(88, 4), 317, 13]-NRT-code) [i]
4Linear OOA(335, 88, F3, 5, 12) (dual of [(88, 5), 405, 13]-NRT-code) [i]
5Digital (23, 35, 88)-net over F3 [i]