Best Known (41, s)-Sequences in Base 25
(41, 287)-Sequence over F25 — Constructive and digital
Digital (41, 287)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 41 and N(F) ≥ 288, using
(41, 1035)-Sequence in Base 25 — Upper bound on s
There is no (41, 1036)-sequence in base 25, because
- net from sequence [i] would yield (41, m, 1037)-net in base 25 for arbitrarily large m, but
- m-reduction [i] would yield (41, 2071, 1037)-net in base 25, but
- extracting embedded OOA [i] would yield OOA(252071, 1037, S25, 2, 2030), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 986497 448592 208227 255380 845676 783206 314057 787619 707960 135409 580233 632325 934097 010430 342072 602241 392363 028960 572618 336589 172209 118954 935105 833910 970859 219119 871025 689942 103896 462744 616834 945935 731304 106350 286122 993146 561143 210410 343042 370842 265403 465659 836394 681662 121948 380041 805839 155782 145386 224047 036017 910213 191263 625447 053397 192590 504753 476611 011400 034665 335242 591182 775494 556540 119612 788566 171801 246114 488321 081106 547990 168730 718785 926678 390608 109497 366997 432648 647147 783626 653315 030319 374718 113935 319197 601292 438362 331150 716291 842225 881197 046981 154461 378042 171037 748232 805912 699700 008320 920287 448880 340974 639800 156408 343419 398942 822547 864687 745578 698136 186518 169395 338275 799615 871311 037402 165897 310323 774695 731732 211481 662920 490988 673588 716004 238842 508376 611997 550924 914581 079810 289740 761126 451596 561267 367892 628008 097619 913276 885848 285896 041239 195138 531284 605845 391457 027479 037562 489785 968297 488839 080738 910675 330858 681222 269269 648910 907543 810116 089233 750144 948140 215716 911562 034097 116616 998291 805148 347432 776621 295042 567087 001044 906440 706813 067256 842589 631269 449913 423028 339471 627828 459074 052141 861583 434757 181098 864511 604510 717190 859188 332938 068922 660090 922231 966565 626615 642831 967129 729795 731943 918454 411403 356636 085265 299118 022701 986486 653834 238293 326450 117280 757862 506859 797729 501939 483952 096476 228871 098700 022306 524403 449663 134503 299895 910268 618220 678816 564213 613859 359611 654072 477349 474475 487861 283178 912736 692244 788491 301408 581326 706890 677971 447131 888597 455714 001561 209098 136539 639865 429768 883142 973893 661235 067814 332394 557581 466839 683326 572870 902870 607982 778937 505970 553143 973986 474026 272281 595033 918831 767494 358002 880278 229345 841672 096678 091717 027938 896536 736494 398796 350588 325217 030925 083954 083119 379466 305597 067344 032813 516998 662967 297418 443599 400630 957890 145188 839882 787632 101931 878548 575198 728526 624850 400102 742848 101214 809848 109291 284909 025210 016798 216853 611755 689429 461204 137738 317121 731366 181882 850315 641065 572805 503273 439871 196972 130147 858225 100874 818275 569873 697442 265637 676422 001021 777723 227256 417480 930558 945150 347869 219233 875361 427670 854270 332746 135170 746415 773260 387521 355525 111395 263673 415747 586505 671794 132100 166373 666906 476284 708642 845160 339255 859102 813669 068897 496000 277203 459914 836913 461180 732137 192620 809761 690661 962509 815421 981959 009481 469589 207937 981864 657385 390350 768373 632946 205115 242601 407341 418335 460575 991673 318395 946962 153377 678022 621786 278064 896235 343780 028778 401020 244587 945151 123575 507431 249970 910050 395745 974866 751594 909881 506320 208867 546711 432109 512766 575078 682395 751029 282636 407953 983578 261529 468960 051778 813552 277865 825778 837720 771597 073225 895778 971786 832424 132717 847433 783798 249166 634115 698328 207262 061600 141642 786881 967928 194848 982591 706424 272836 033306 646623 557428 244234 336858 522801 452000 332778 364550 349410 696772 001375 896354 915774 862689 800349 061523 417762 817675 859872 434498 166040 255100 746060 730610 898403 987463 201048 058181 186206 638813 018798 828125 / 677 > 252071 [i]
- extracting embedded OOA [i] would yield OOA(252071, 1037, S25, 2, 2030), but
- m-reduction [i] would yield (41, 2071, 1037)-net in base 25, but